spark PivotFirst 源码

  • 2022-10-20
  • 浏览 (226)

spark PivotFirst 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/PivotFirst.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.expressions.aggregate

import scala.collection.immutable.{HashMap, TreeMap}

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.trees.BinaryLike
import org.apache.spark.sql.catalyst.util.{GenericArrayData, TypeUtils}
import org.apache.spark.sql.types._

object PivotFirst {

  def supportsDataType(dataType: DataType): Boolean = updateFunction.isDefinedAt(dataType)

  // Currently UnsafeRow does not support the generic update method (throws
  // UnsupportedOperationException), so we need to explicitly support each DataType.
  private val updateFunction: PartialFunction[DataType, (InternalRow, Int, Any) => Unit] = {
    case DoubleType =>
      (row, offset, value) => row.setDouble(offset, value.asInstanceOf[Double])
    case IntegerType =>
      (row, offset, value) => row.setInt(offset, value.asInstanceOf[Int])
    case LongType =>
      (row, offset, value) => row.setLong(offset, value.asInstanceOf[Long])
    case FloatType =>
      (row, offset, value) => row.setFloat(offset, value.asInstanceOf[Float])
    case BooleanType =>
      (row, offset, value) => row.setBoolean(offset, value.asInstanceOf[Boolean])
    case ShortType =>
      (row, offset, value) => row.setShort(offset, value.asInstanceOf[Short])
    case ByteType =>
      (row, offset, value) => row.setByte(offset, value.asInstanceOf[Byte])
    case d: DecimalType =>
      (row, offset, value) => row.setDecimal(offset, value.asInstanceOf[Decimal], d.precision)
  }
}

/**
 * PivotFirst is an aggregate function used in the second phase of a two phase pivot to do the
 * required rearrangement of values into pivoted form.
 *
 * For example on an input of
 * A | B
 * --+--
 * x | 1
 * y | 2
 * z | 3
 *
 * with pivotColumn=A, valueColumn=B, and pivotColumnValues=[z,y] the output is [3,2].
 *
 * @param pivotColumn column that determines which output position to put valueColumn in.
 * @param valueColumn the column that is being rearranged.
 * @param pivotColumnValues the list of pivotColumn values in the order of desired output. Values
 *                          not listed here will be ignored.
 */
case class PivotFirst(
  pivotColumn: Expression,
  valueColumn: Expression,
  pivotColumnValues: Seq[Any],
  mutableAggBufferOffset: Int = 0,
  inputAggBufferOffset: Int = 0) extends ImperativeAggregate with BinaryLike[Expression] {

  override val left: Expression = pivotColumn
  override val right: Expression = valueColumn

  override val nullable: Boolean = false

  val valueDataType = valueColumn.dataType

  override val dataType: DataType = ArrayType(valueDataType)

  val pivotIndex: Map[Any, Int] = if (pivotColumn.dataType.isInstanceOf[AtomicType]) {
    HashMap(pivotColumnValues.zipWithIndex: _*)
  } else {
    TreeMap(pivotColumnValues.zipWithIndex: _*)(
      TypeUtils.getInterpretedOrdering(pivotColumn.dataType))
  }

  val indexSize = pivotIndex.size

  private val updateRow: (InternalRow, Int, Any) => Unit = PivotFirst.updateFunction(valueDataType)

  override def update(mutableAggBuffer: InternalRow, inputRow: InternalRow): Unit = {
    val pivotColValue = pivotColumn.eval(inputRow)
    // We ignore rows whose pivot column value is not in the list of pivot column values.
    val index = pivotIndex.getOrElse(pivotColValue, -1)
    if (index >= 0) {
      val value = valueColumn.eval(inputRow)
      if (value != null) {
        updateRow(mutableAggBuffer, mutableAggBufferOffset + index, value)
      }
    }
  }

  override def merge(mutableAggBuffer: InternalRow, inputAggBuffer: InternalRow): Unit = {
    for (i <- 0 until indexSize) {
      if (!inputAggBuffer.isNullAt(inputAggBufferOffset + i)) {
        val value = inputAggBuffer.get(inputAggBufferOffset + i, valueDataType)
        updateRow(mutableAggBuffer, mutableAggBufferOffset + i, value)
      }
    }
  }

  override def initialize(mutableAggBuffer: InternalRow): Unit = valueDataType match {
    case d: DecimalType =>
      // Per doc of setDecimal we need to do this instead of setNullAt for DecimalType.
      for (i <- 0 until indexSize) {
        mutableAggBuffer.setDecimal(mutableAggBufferOffset + i, null, d.precision)
      }
    case _ =>
      for (i <- 0 until indexSize) {
        mutableAggBuffer.setNullAt(mutableAggBufferOffset + i)
      }
  }

  override def eval(input: InternalRow): Any = {
    val result = new Array[Any](indexSize)
    for (i <- 0 until indexSize) {
      result(i) = input.get(mutableAggBufferOffset + i, valueDataType)
    }
    new GenericArrayData(result)
  }

  override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): ImperativeAggregate =
    copy(inputAggBufferOffset = newInputAggBufferOffset)

  override def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): ImperativeAggregate =
    copy(mutableAggBufferOffset = newMutableAggBufferOffset)


  override val aggBufferAttributes: Seq[AttributeReference] =
    pivotIndex.toList.sortBy(_._2).map { kv =>
      AttributeReference(Option(kv._1).getOrElse("null").toString, valueDataType)()
    }

  override val aggBufferSchema: StructType = StructType.fromAttributes(aggBufferAttributes)

  override val inputAggBufferAttributes: Seq[AttributeReference] =
    aggBufferAttributes.map(_.newInstance())

  override protected def withNewChildrenInternal(
      newLeft: Expression, newRight: Expression): PivotFirst =
    copy(pivotColumn = newLeft, valueColumn = newRight)
}

相关信息

spark 源码目录

相关文章

spark AnyValue 源码

spark ApproxCountDistinctForIntervals 源码

spark ApproximatePercentile 源码

spark Average 源码

spark BloomFilterAggregate 源码

spark CentralMomentAgg 源码

spark Corr 源码

spark Count 源码

spark CountIf 源码

spark CountMinSketchAgg 源码

0  赞