spark CountMinSketchAgg 源码

  • 2022-10-20
  • 浏览 (240)

spark CountMinSketchAgg 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/CountMinSketchAgg.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.expressions.aggregate

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.{TypeCheckFailure, TypeCheckSuccess}
import org.apache.spark.sql.catalyst.expressions.{ExpectsInputTypes, Expression, ExpressionDescription, Literal}
import org.apache.spark.sql.catalyst.trees.QuaternaryLike
import org.apache.spark.sql.types._
import org.apache.spark.unsafe.types.UTF8String
import org.apache.spark.util.sketch.CountMinSketch

/**
 * This function returns a count-min sketch of a column with the given esp, confidence and seed.
 * A count-min sketch is a probabilistic data structure used for summarizing streams of data in
 * sub-linear space, which is useful for equality predicates and join size estimation.
 * The result returned by the function is an array of bytes, which should be deserialized to a
 * `CountMinSketch` before usage.
 *
 * @param child child expression that can produce column value with `child.eval(inputRow)`
 * @param epsExpression relative error, must be positive
 * @param confidenceExpression confidence, must be positive and less than 1.0
 * @param seedExpression random seed
 */
// scalastyle:off line.size.limit
@ExpressionDescription(
  usage = """
    _FUNC_(col, eps, confidence, seed) - Returns a count-min sketch of a column with the given esp,
      confidence and seed. The result is an array of bytes, which can be deserialized to a
      `CountMinSketch` before usage. Count-min sketch is a probabilistic data structure used for
      cardinality estimation using sub-linear space.
  """,
  examples = """
    Examples:
      > SELECT hex(_FUNC_(col, 0.5d, 0.5d, 1)) FROM VALUES (1), (2), (1) AS tab(col);
       0000000100000000000000030000000100000004000000005D8D6AB90000000000000000000000000000000200000000000000010000000000000000
  """,
  group = "agg_funcs",
  since = "2.2.0")
// scalastyle:on line.size.limit
case class CountMinSketchAgg(
    child: Expression,
    epsExpression: Expression,
    confidenceExpression: Expression,
    seedExpression: Expression,
    override val mutableAggBufferOffset: Int,
    override val inputAggBufferOffset: Int)
  extends TypedImperativeAggregate[CountMinSketch]
  with ExpectsInputTypes
  with QuaternaryLike[Expression] {

  def this(
      child: Expression,
      epsExpression: Expression,
      confidenceExpression: Expression,
      seedExpression: Expression) = {
    this(child, epsExpression, confidenceExpression, seedExpression, 0, 0)
  }

  // Mark as lazy so that they are not evaluated during tree transformation.
  private lazy val eps: Double = epsExpression.eval().asInstanceOf[Double]
  private lazy val confidence: Double = confidenceExpression.eval().asInstanceOf[Double]
  private lazy val seed: Int = seedExpression.eval().asInstanceOf[Int]

  override def checkInputDataTypes(): TypeCheckResult = {
    val defaultCheck = super.checkInputDataTypes()
    if (defaultCheck.isFailure) {
      defaultCheck
    } else if (!epsExpression.foldable || !confidenceExpression.foldable ||
      !seedExpression.foldable) {
      TypeCheckFailure(
        "The eps, confidence or seed provided must be a literal or foldable")
    } else if (epsExpression.eval() == null || confidenceExpression.eval() == null ||
      seedExpression.eval() == null) {
      TypeCheckFailure("The eps, confidence or seed provided should not be null")
    } else if (eps <= 0.0) {
      TypeCheckFailure(s"Relative error must be positive (current value = $eps)")
    } else if (confidence <= 0.0 || confidence >= 1.0) {
      TypeCheckFailure(s"Confidence must be within range (0.0, 1.0) (current value = $confidence)")
    } else {
      TypeCheckSuccess
    }
  }

  override def createAggregationBuffer(): CountMinSketch = {
    CountMinSketch.create(eps, confidence, seed)
  }

  override def update(buffer: CountMinSketch, input: InternalRow): CountMinSketch = {
    val value = child.eval(input)
    // Ignore empty rows
    if (value != null) {
      child.dataType match {
        // For string type, we can get bytes of our `UTF8String` directly, and call the `addBinary`
        // instead of `addString` to avoid unnecessary conversion.
        case StringType => buffer.addBinary(value.asInstanceOf[UTF8String].getBytes)
        case _ => buffer.add(value)
      }
    }
    buffer
  }

  override def merge(buffer: CountMinSketch, input: CountMinSketch): CountMinSketch = {
    buffer.mergeInPlace(input)
    buffer
  }

  override def eval(buffer: CountMinSketch): Any = serialize(buffer)

  override def serialize(buffer: CountMinSketch): Array[Byte] = {
    buffer.toByteArray
  }

  override def deserialize(storageFormat: Array[Byte]): CountMinSketch = {
    CountMinSketch.readFrom(storageFormat)
  }

  override def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): CountMinSketchAgg =
    copy(mutableAggBufferOffset = newMutableAggBufferOffset)

  override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): CountMinSketchAgg =
    copy(inputAggBufferOffset = newInputAggBufferOffset)

  override def inputTypes: Seq[AbstractDataType] = {
    Seq(TypeCollection(IntegralType, StringType, BinaryType), DoubleType, DoubleType, IntegerType)
  }

  override def nullable: Boolean = false

  override def dataType: DataType = BinaryType

  override def defaultResult: Option[Literal] =
    Option(Literal.create(eval(createAggregationBuffer()), dataType))

  override def prettyName: String = "count_min_sketch"

  override def first: Expression = child
  override def second: Expression = epsExpression
  override def third: Expression = confidenceExpression
  override def fourth: Expression = seedExpression

  override protected def withNewChildrenInternal(first: Expression, second: Expression,
      third: Expression, fourth: Expression): CountMinSketchAgg =
    copy(
      child = first,
      epsExpression = second,
      confidenceExpression = third,
      seedExpression = fourth)
}

相关信息

spark 源码目录

相关文章

spark AnyValue 源码

spark ApproxCountDistinctForIntervals 源码

spark ApproximatePercentile 源码

spark Average 源码

spark BloomFilterAggregate 源码

spark CentralMomentAgg 源码

spark Corr 源码

spark Count 源码

spark CountIf 源码

spark Covariance 源码

0  赞