spark ApproximatePercentile 源码

  • 2022-10-20
  • 浏览 (228)

spark ApproximatePercentile 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/ApproximatePercentile.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.expressions.aggregate

import java.nio.ByteBuffer

import com.google.common.primitives.{Doubles, Ints, Longs}

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.analysis.{FunctionRegistry, TypeCheckResult}
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.{DataTypeMismatch, TypeCheckSuccess}
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.Cast._
import org.apache.spark.sql.catalyst.expressions.aggregate.ApproximatePercentile.PercentileDigest
import org.apache.spark.sql.catalyst.trees.TernaryLike
import org.apache.spark.sql.catalyst.util.{ArrayData, GenericArrayData}
import org.apache.spark.sql.catalyst.util.QuantileSummaries
import org.apache.spark.sql.catalyst.util.QuantileSummaries.{defaultCompressThreshold, Stats}
import org.apache.spark.sql.errors.QueryExecutionErrors
import org.apache.spark.sql.types._

/**
 * The ApproximatePercentile function returns the approximate percentile(s) of a column at the given
 * percentage(s). A percentile is a watermark value below which a given percentage of the column
 * values fall. For example, the percentile of column `col` at percentage 50% is the median of
 * column `col`.
 *
 * This function supports partial aggregation.
 *
 * @param child child expression that can produce column value with `child.eval(inputRow)`
 * @param percentageExpression Expression that represents a single percentage value or
 *                             an array of percentage values. Each percentage value must be between
 *                             0.0 and 1.0.
 * @param accuracyExpression Integer literal expression of approximation accuracy. Higher value
 *                           yields better accuracy, the default value is
 *                           DEFAULT_PERCENTILE_ACCURACY.
 */
// scalastyle:off line.size.limit
@ExpressionDescription(
  usage = """
    _FUNC_(col, percentage [, accuracy]) - Returns the approximate `percentile` of the numeric or
      ansi interval column `col` which is the smallest value in the ordered `col` values (sorted
      from least to greatest) such that no more than `percentage` of `col` values is less than
      the value or equal to that value. The value of percentage must be between 0.0 and 1.0.
      The `accuracy` parameter (default: 10000) is a positive numeric literal which controls
      approximation accuracy at the cost of memory. Higher value of `accuracy` yields better
      accuracy, `1.0/accuracy` is the relative error of the approximation.
      When `percentage` is an array, each value of the percentage array must be between 0.0 and 1.0.
      In this case, returns the approximate percentile array of column `col` at the given
      percentage array.
  """,
  examples = """
    Examples:
      > SELECT _FUNC_(col, array(0.5, 0.4, 0.1), 100) FROM VALUES (0), (1), (2), (10) AS tab(col);
       [1,1,0]
      > SELECT _FUNC_(col, 0.5, 100) FROM VALUES (0), (6), (7), (9), (10) AS tab(col);
       7
      > SELECT _FUNC_(col, 0.5, 100) FROM VALUES (INTERVAL '0' MONTH), (INTERVAL '1' MONTH), (INTERVAL '2' MONTH), (INTERVAL '10' MONTH) AS tab(col);
       0-1
      > SELECT _FUNC_(col, array(0.5, 0.7), 100) FROM VALUES (INTERVAL '0' SECOND), (INTERVAL '1' SECOND), (INTERVAL '2' SECOND), (INTERVAL '10' SECOND) AS tab(col);
       [0 00:00:01.000000000,0 00:00:02.000000000]
  """,
  group = "agg_funcs",
  since = "2.1.0")
// scalastyle:on line.size.limit
case class ApproximatePercentile(
    child: Expression,
    percentageExpression: Expression,
    accuracyExpression: Expression,
    override val mutableAggBufferOffset: Int,
    override val inputAggBufferOffset: Int)
  extends TypedImperativeAggregate[PercentileDigest] with ImplicitCastInputTypes
  with TernaryLike[Expression] {

  def this(child: Expression, percentageExpression: Expression, accuracyExpression: Expression) = {
    this(child, percentageExpression, accuracyExpression, 0, 0)
  }

  def this(child: Expression, percentageExpression: Expression) = {
    this(child, percentageExpression, Literal(ApproximatePercentile.DEFAULT_PERCENTILE_ACCURACY))
  }

  // Mark as lazy so that accuracyExpression is not evaluated during tree transformation.
  private lazy val accuracy: Long = accuracyExpression.eval().asInstanceOf[Number].longValue

  override def inputTypes: Seq[AbstractDataType] = {
    // Support NumericType, DateType, TimestampType and TimestampNTZType since their internal types
    // are all numeric, and can be easily cast to double for processing.
    Seq(TypeCollection(NumericType, DateType, TimestampType, TimestampNTZType,
      YearMonthIntervalType, DayTimeIntervalType),
      TypeCollection(DoubleType, ArrayType(DoubleType, containsNull = false)), IntegralType)
  }

  // Mark as lazy so that percentageExpression is not evaluated during tree transformation.
  private lazy val (returnPercentileArray, percentages) =
    percentageExpression.eval() match {
      // Rule ImplicitTypeCasts can cast other numeric types to double
      case null => (false, null)
      case num: Double => (false, Array(num))
      case arrayData: ArrayData => (true, arrayData.toDoubleArray())
    }

  override def checkInputDataTypes(): TypeCheckResult = {
    val defaultCheck = super.checkInputDataTypes()
    if (defaultCheck.isFailure) {
      defaultCheck
    } else if (!percentageExpression.foldable) {
      DataTypeMismatch(
        errorSubClass = "NON_FOLDABLE_INPUT",
        messageParameters = Map(
          "inputName" -> "percentage",
          "inputType" -> toSQLType(percentageExpression.dataType),
          "inputExpr" -> toSQLExpr(percentageExpression)
        )
      )
    } else if (!accuracyExpression.foldable) {
      DataTypeMismatch(
        errorSubClass = "NON_FOLDABLE_INPUT",
        messageParameters = Map(
          "inputName" -> "accuracy",
          "inputType" -> toSQLType(accuracyExpression.dataType),
          "inputExpr" -> toSQLExpr(accuracyExpression)
        )
      )
    } else if (accuracy <= 0 || accuracy > Int.MaxValue) {
      DataTypeMismatch(
        errorSubClass = "VALUE_OUT_OF_RANGE",
        messageParameters = Map(
          "exprName" -> "accuracy",
          "valueRange" -> s"(0, ${Int.MaxValue}]",
          "currentValue" -> toSQLValue(accuracy, LongType)
        )
      )
    } else if (percentages == null) {
      DataTypeMismatch(
        errorSubClass = "UNEXPECTED_NULL",
        messageParameters = Map("exprName" -> "percentage"))
    } else if (percentages.exists(percentage => percentage < 0.0D || percentage > 1.0D)) {
      DataTypeMismatch(
        errorSubClass = "VALUE_OUT_OF_RANGE",
        messageParameters = Map(
          "exprName" -> "percentage",
          "valueRange" -> "[0.0, 1.0]",
          "currentValue" -> percentages.map(toSQLValue(_, DoubleType)).mkString(",")
        )
      )
    } else {
      TypeCheckSuccess
    }
  }

  override def createAggregationBuffer(): PercentileDigest = {
    val relativeError = 1.0D / accuracy
    new PercentileDigest(relativeError)
  }

  override def update(buffer: PercentileDigest, inputRow: InternalRow): PercentileDigest = {
    val value = child.eval(inputRow)
    // Ignore empty rows, for example: percentile_approx(null)
    if (value != null) {
      // Convert the value to a double value
      val doubleValue = child.dataType match {
        case DateType | _: YearMonthIntervalType => value.asInstanceOf[Int].toDouble
        case TimestampType | TimestampNTZType | _: DayTimeIntervalType =>
          value.asInstanceOf[Long].toDouble
        case n: NumericType => n.numeric.toDouble(value.asInstanceOf[n.InternalType])
        case other: DataType =>
          throw QueryExecutionErrors.dataTypeUnexpectedError(other)
      }
      buffer.add(doubleValue)
    }
    buffer
  }

  override def merge(buffer: PercentileDigest, other: PercentileDigest): PercentileDigest = {
    buffer.merge(other)
    buffer
  }

  override def eval(buffer: PercentileDigest): Any = {
    val doubleResult = buffer.getPercentiles(percentages)
    val result = child.dataType match {
      case DateType | _: YearMonthIntervalType => doubleResult.map(_.toInt)
      case TimestampType | TimestampNTZType | _: DayTimeIntervalType => doubleResult.map(_.toLong)
      case ByteType => doubleResult.map(_.toByte)
      case ShortType => doubleResult.map(_.toShort)
      case IntegerType => doubleResult.map(_.toInt)
      case LongType => doubleResult.map(_.toLong)
      case FloatType => doubleResult.map(_.toFloat)
      case DoubleType => doubleResult
      case _: DecimalType => doubleResult.map(Decimal(_))
      case other: DataType =>
        throw QueryExecutionErrors.dataTypeUnexpectedError(other)
    }
    if (result.length == 0) {
      null
    } else if (returnPercentileArray) {
      new GenericArrayData(result)
    } else {
      result(0)
    }
  }

  override def withNewMutableAggBufferOffset(newOffset: Int): ApproximatePercentile =
    copy(mutableAggBufferOffset = newOffset)

  override def withNewInputAggBufferOffset(newOffset: Int): ApproximatePercentile =
    copy(inputAggBufferOffset = newOffset)

  override def first: Expression = child
  override def second: Expression = percentageExpression
  override def third: Expression = accuracyExpression

  // Returns null for empty inputs
  override def nullable: Boolean = true

  // The result type is the same as the input type.
  private lazy val internalDataType: DataType = {
    if (returnPercentileArray) ArrayType(child.dataType, false) else child.dataType
  }

  override def dataType: DataType = internalDataType

  override def prettyName: String =
    getTagValue(FunctionRegistry.FUNC_ALIAS).getOrElse("percentile_approx")

  override def serialize(obj: PercentileDigest): Array[Byte] = {
    ApproximatePercentile.serializer.serialize(obj)
  }

  override def deserialize(bytes: Array[Byte]): PercentileDigest = {
    ApproximatePercentile.serializer.deserialize(bytes)
  }

  override protected def withNewChildrenInternal(
      newFirst: Expression, newSecond: Expression, newThird: Expression): ApproximatePercentile =
    copy(child = newFirst, percentageExpression = newSecond, accuracyExpression = newThird)
}

object ApproximatePercentile {

  // Default accuracy of Percentile approximation. Larger value means better accuracy.
  // The default relative error can be deduced by defaultError = 1.0 / DEFAULT_PERCENTILE_ACCURACY
  val DEFAULT_PERCENTILE_ACCURACY: Int = 10000

  /**
   * PercentileDigest is a probabilistic data structure used for approximating percentiles
   * with limited memory. PercentileDigest is backed by [[QuantileSummaries]].
   *
   * @param summaries underlying probabilistic data structure [[QuantileSummaries]].
   */
  class PercentileDigest(private var summaries: QuantileSummaries) {

    def this(relativeError: Double) = {
      this(new QuantileSummaries(defaultCompressThreshold, relativeError, compressed = true))
    }

    private[sql] def isCompressed: Boolean = summaries.compressed

    /** Returns compressed object of [[QuantileSummaries]] */
    def quantileSummaries: QuantileSummaries = {
      if (!isCompressed) compress()
      summaries
    }

    /** Insert an observation value into the PercentileDigest data structure. */
    def add(value: Double): Unit = {
      summaries = summaries.insert(value)
    }

    /** In-place merges in another PercentileDigest. */
    def merge(other: PercentileDigest): Unit = {
      if (!isCompressed) compress()
      summaries = summaries.merge(other.quantileSummaries)
    }

    /**
     * Returns the approximate percentiles of all observation values at the given percentages.
     * A percentile is a watermark value below which a given percentage of observation values fall.
     * For example, the following code returns the 25th, median, and 75th percentiles of
     * all observation values:
     *
     * {{{
     *   val Array(p25, median, p75) = percentileDigest.getPercentiles(Array(0.25, 0.5, 0.75))
     * }}}
     */
    def getPercentiles(percentages: Array[Double]): Seq[Double] = {
      if (!isCompressed) compress()
      if (summaries.count == 0 || percentages.length == 0) {
        Array.emptyDoubleArray
      } else {
        summaries.query(percentages).get
      }
    }

    private final def compress(): Unit = {
      summaries = summaries.compress()
    }
  }

  /**
   * Serializer for class [[PercentileDigest]]
   *
   * This class is thread safe.
   */
  class PercentileDigestSerializer {

    private final def length(summaries: QuantileSummaries): Int = {
      // summaries.compressThreshold, summary.relativeError, summary.count
      Ints.BYTES + Doubles.BYTES + Longs.BYTES +
      // length of summary.sampled
      Ints.BYTES +
      // summary.sampled, Array[Stat(value: Double, g: Long, delta: Long)]
      summaries.sampled.length * (Doubles.BYTES + Longs.BYTES + Longs.BYTES)
    }

    final def serialize(obj: PercentileDigest): Array[Byte] = {
      val summary = obj.quantileSummaries
      val buffer = ByteBuffer.wrap(new Array(length(summary)))
      buffer.putInt(summary.compressThreshold)
      buffer.putDouble(summary.relativeError)
      buffer.putLong(summary.count)
      buffer.putInt(summary.sampled.length)

      var i = 0
      while (i < summary.sampled.length) {
        val stat = summary.sampled(i)
        buffer.putDouble(stat.value)
        buffer.putLong(stat.g)
        buffer.putLong(stat.delta)
        i += 1
      }
      buffer.array()
    }

    final def deserialize(bytes: Array[Byte]): PercentileDigest = {
      val buffer = ByteBuffer.wrap(bytes)
      val compressThreshold = buffer.getInt()
      val relativeError = buffer.getDouble()
      val count = buffer.getLong()
      val sampledLength = buffer.getInt()
      val sampled = new Array[Stats](sampledLength)

      var i = 0
      while (i < sampledLength) {
        val value = buffer.getDouble()
        val g = buffer.getLong()
        val delta = buffer.getLong()
        sampled(i) = Stats(value, g, delta)
        i += 1
      }
      val summary = new QuantileSummaries(compressThreshold, relativeError, sampled, count, true)
      new PercentileDigest(summary)
    }
  }

  val serializer: PercentileDigestSerializer = new PercentileDigestSerializer

}

相关信息

spark 源码目录

相关文章

spark AnyValue 源码

spark ApproxCountDistinctForIntervals 源码

spark Average 源码

spark BloomFilterAggregate 源码

spark CentralMomentAgg 源码

spark Corr 源码

spark Count 源码

spark CountIf 源码

spark CountMinSketchAgg 源码

spark Covariance 源码

0  赞