spark Corr 源码
spark Corr 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Corr.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.expressions.aggregate
import org.apache.spark.sql.catalyst.dsl.expressions._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.trees.BinaryLike
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._
/**
* Base class for computing Pearson correlation between two expressions.
* When applied on empty data (i.e., count is zero), it returns NULL.
*
* Definition of Pearson correlation can be found at
* http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
*/
abstract class PearsonCorrelation(x: Expression, y: Expression, nullOnDivideByZero: Boolean)
extends DeclarativeAggregate with ImplicitCastInputTypes with BinaryLike[Expression] {
override def left: Expression = x
override def right: Expression = y
override def nullable: Boolean = true
override def dataType: DataType = DoubleType
override def inputTypes: Seq[AbstractDataType] = Seq(DoubleType, DoubleType)
protected val n = AttributeReference("n", DoubleType, nullable = false)()
protected val xAvg = AttributeReference("xAvg", DoubleType, nullable = false)()
protected val yAvg = AttributeReference("yAvg", DoubleType, nullable = false)()
protected val ck = AttributeReference("ck", DoubleType, nullable = false)()
protected val xMk = AttributeReference("xMk", DoubleType, nullable = false)()
protected val yMk = AttributeReference("yMk", DoubleType, nullable = false)()
protected def divideByZeroEvalResult: Expression = {
if (nullOnDivideByZero) Literal.create(null, DoubleType) else Double.NaN
}
override def stringArgs: Iterator[Any] =
super.stringArgs.filter(_.isInstanceOf[Expression])
override val aggBufferAttributes: Seq[AttributeReference] = Seq(n, xAvg, yAvg, ck, xMk, yMk)
override val initialValues: Seq[Expression] = Array.fill(6)(Literal(0.0))
override lazy val updateExpressions: Seq[Expression] = updateExpressionsDef
override val mergeExpressions: Seq[Expression] = {
val n1 = n.left
val n2 = n.right
val newN = n1 + n2
val dx = xAvg.right - xAvg.left
val dxN = If(newN === 0.0, 0.0, dx / newN)
val dy = yAvg.right - yAvg.left
val dyN = If(newN === 0.0, 0.0, dy / newN)
val newXAvg = xAvg.left + dxN * n2
val newYAvg = yAvg.left + dyN * n2
val newCk = ck.left + ck.right + dx * dyN * n1 * n2
val newXMk = xMk.left + xMk.right + dx * dxN * n1 * n2
val newYMk = yMk.left + yMk.right + dy * dyN * n1 * n2
Seq(newN, newXAvg, newYAvg, newCk, newXMk, newYMk)
}
protected def updateExpressionsDef: Seq[Expression] = {
val newN = n + 1.0
val dx = x - xAvg
val dxN = dx / newN
val dy = y - yAvg
val dyN = dy / newN
val newXAvg = xAvg + dxN
val newYAvg = yAvg + dyN
val newCk = ck + dx * (y - newYAvg)
val newXMk = xMk + dx * (x - newXAvg)
val newYMk = yMk + dy * (y - newYAvg)
val isNull = x.isNull || y.isNull
Seq(
If(isNull, n, newN),
If(isNull, xAvg, newXAvg),
If(isNull, yAvg, newYAvg),
If(isNull, ck, newCk),
If(isNull, xMk, newXMk),
If(isNull, yMk, newYMk)
)
}
}
// scalastyle:off line.size.limit
@ExpressionDescription(
usage = "_FUNC_(expr1, expr2) - Returns Pearson coefficient of correlation between a set of number pairs.",
examples = """
Examples:
> SELECT _FUNC_(c1, c2) FROM VALUES (3, 2), (3, 3), (6, 4) as tab(c1, c2);
0.8660254037844387
""",
group = "agg_funcs",
since = "1.6.0")
// scalastyle:on line.size.limit
case class Corr(
x: Expression,
y: Expression,
nullOnDivideByZero: Boolean = !SQLConf.get.legacyStatisticalAggregate)
extends PearsonCorrelation(x, y, nullOnDivideByZero) {
def this(x: Expression, y: Expression) =
this(x, y, !SQLConf.get.legacyStatisticalAggregate)
override val evaluateExpression: Expression = {
If(n === 0.0, Literal.create(null, DoubleType),
If(n === 1.0, divideByZeroEvalResult, ck / sqrt(xMk * yMk)))
}
override def prettyName: String = "corr"
override protected def withNewChildrenInternal(newLeft: Expression, newRight: Expression): Corr =
copy(x = newLeft, y = newRight)
}
相关信息
相关文章
spark ApproxCountDistinctForIntervals 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦