spark Mode 源码

  • 2022-10-20
  • 浏览 (217)

spark Mode 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Mode.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.expressions.aggregate

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Expression, ExpressionDescription, ImplicitCastInputTypes}
import org.apache.spark.sql.catalyst.trees.UnaryLike
import org.apache.spark.sql.catalyst.util.GenericArrayData
import org.apache.spark.sql.types.{AbstractDataType, AnyDataType, ArrayType, DataType}
import org.apache.spark.util.collection.OpenHashMap

// scalastyle:off line.size.limit
@ExpressionDescription(
  usage = "_FUNC_(col) - Returns the most frequent value for the values within `col`. NULL values are ignored. If all the values are NULL, or there are 0 rows, returns NULL.",
  examples = """
    Examples:
      > SELECT _FUNC_(col) FROM VALUES (0), (10), (10) AS tab(col);
       10
      > SELECT _FUNC_(col) FROM VALUES (INTERVAL '0' MONTH), (INTERVAL '10' MONTH), (INTERVAL '10' MONTH) AS tab(col);
       0-10
      > SELECT _FUNC_(col) FROM VALUES (0), (10), (10), (null), (null), (null) AS tab(col);
       10
  """,
  group = "agg_funcs",
  since = "3.4.0")
// scalastyle:on line.size.limit
case class Mode(
    child: Expression,
    mutableAggBufferOffset: Int = 0,
    inputAggBufferOffset: Int = 0) extends TypedAggregateWithHashMapAsBuffer
  with ImplicitCastInputTypes with UnaryLike[Expression] {

  def this(child: Expression) = this(child, 0, 0)

  // Returns null for empty inputs
  override def nullable: Boolean = true

  override def dataType: DataType = child.dataType

  override def inputTypes: Seq[AbstractDataType] = Seq(AnyDataType)

  override def prettyName: String = "mode"

  override def update(
      buffer: OpenHashMap[AnyRef, Long],
      input: InternalRow): OpenHashMap[AnyRef, Long] = {
    val key = child.eval(input).asInstanceOf[AnyRef]

    if (key != null) {
      buffer.changeValue(key, 1L, _ + 1L)
    }
    buffer
  }

  override def merge(
      buffer: OpenHashMap[AnyRef, Long],
      other: OpenHashMap[AnyRef, Long]): OpenHashMap[AnyRef, Long] = {
    other.foreach { case (key, count) =>
      buffer.changeValue(key, count, _ + count)
    }
    buffer
  }

  override def eval(buffer: OpenHashMap[AnyRef, Long]): Any = {
    if (buffer.isEmpty) {
      return null
    }

    buffer.maxBy(_._2)._1
  }

  override def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): Mode =
    copy(mutableAggBufferOffset = newMutableAggBufferOffset)

  override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): Mode =
    copy(inputAggBufferOffset = newInputAggBufferOffset)

  override protected def withNewChildInternal(newChild: Expression): Expression =
    copy(child = newChild)
}

/**
 * Mode in Pandas' fashion. This expression is dedicated only for Pandas API on Spark.
 * It has two main difference from `Mode`:
 * 1, it accepts NULLs when `ignoreNA` is False;
 * 2, it returns all the modes for a multimodal dataset;
 */
case class PandasMode(
    child: Expression,
    ignoreNA: Boolean = true,
    mutableAggBufferOffset: Int = 0,
    inputAggBufferOffset: Int = 0) extends TypedAggregateWithHashMapAsBuffer
  with ImplicitCastInputTypes with UnaryLike[Expression] {

  def this(child: Expression) = this(child, true, 0, 0)

  // Returns empty array for empty inputs
  override def nullable: Boolean = false

  override def dataType: DataType = ArrayType(child.dataType, containsNull = !ignoreNA)

  override def inputTypes: Seq[AbstractDataType] = Seq(AnyDataType)

  override def prettyName: String = "pandas_mode"

  override def update(
      buffer: OpenHashMap[AnyRef, Long],
      input: InternalRow): OpenHashMap[AnyRef, Long] = {
    val key = child.eval(input).asInstanceOf[AnyRef]

    if (key != null || !ignoreNA) {
      buffer.changeValue(key, 1L, _ + 1L)
    }
    buffer
  }

  override def merge(
      buffer: OpenHashMap[AnyRef, Long],
      other: OpenHashMap[AnyRef, Long]): OpenHashMap[AnyRef, Long] = {
    other.foreach { case (key, count) =>
      buffer.changeValue(key, count, _ + count)
    }
    buffer
  }

  override def eval(buffer: OpenHashMap[AnyRef, Long]): Any = {
    if (buffer.isEmpty) {
      return new GenericArrayData(Seq.empty)
    }

    val modes = collection.mutable.ArrayBuffer.empty[AnyRef]
    var maxCount = -1L
    val iter = buffer.iterator
    while (iter.hasNext) {
      val (key, count) = iter.next()
      if (maxCount < count) {
        modes.clear()
        modes.append(key)
        maxCount = count
      } else if (maxCount == count) {
        modes.append(key)
      }
    }
    new GenericArrayData(modes.toSeq)
  }

  override def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): PandasMode =
    copy(mutableAggBufferOffset = newMutableAggBufferOffset)

  override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): PandasMode =
    copy(inputAggBufferOffset = newInputAggBufferOffset)

  override protected def withNewChildInternal(newChild: Expression): Expression =
    copy(child = newChild)
}

相关信息

spark 源码目录

相关文章

spark AnyValue 源码

spark ApproxCountDistinctForIntervals 源码

spark ApproximatePercentile 源码

spark Average 源码

spark BloomFilterAggregate 源码

spark CentralMomentAgg 源码

spark Corr 源码

spark Count 源码

spark CountIf 源码

spark CountMinSketchAgg 源码

0  赞