spark First 源码
spark First 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/First.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.expressions.aggregate
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult.TypeCheckSuccess
import org.apache.spark.sql.catalyst.dsl.expressions._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.trees.UnaryLike
import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.types._
/**
* Returns the first value of `child` for a group of rows. If the first value of `child`
* is `null`, it returns `null` (respecting nulls). Even if [[First]] is used on an already
* sorted column, if we do partial aggregation and final aggregation (when mergeExpression
* is used) its result will not be deterministic (unless the input table is sorted and has
* a single partition, and we use a single reducer to do the aggregation.).
*/
@ExpressionDescription(
usage = """
_FUNC_(expr[, isIgnoreNull]) - Returns the first value of `expr` for a group of rows.
If `isIgnoreNull` is true, returns only non-null values.""",
examples = """
Examples:
> SELECT _FUNC_(col) FROM VALUES (10), (5), (20) AS tab(col);
10
> SELECT _FUNC_(col) FROM VALUES (NULL), (5), (20) AS tab(col);
NULL
> SELECT _FUNC_(col, true) FROM VALUES (NULL), (5), (20) AS tab(col);
5
""",
note = """
The function is non-deterministic because its results depends on the order of the rows
which may be non-deterministic after a shuffle.
""",
group = "agg_funcs",
since = "2.0.0")
case class First(child: Expression, ignoreNulls: Boolean)
extends DeclarativeAggregate with ExpectsInputTypes with UnaryLike[Expression] {
def this(child: Expression) = this(child, false)
def this(child: Expression, ignoreNullsExpr: Expression) = {
this(child, FirstLast.validateIgnoreNullExpr(ignoreNullsExpr, "first"))
}
override def nullable: Boolean = true
// Return data type.
override def dataType: DataType = child.dataType
// Expected input data type.
override def inputTypes: Seq[AbstractDataType] = Seq(AnyDataType, BooleanType)
override def checkInputDataTypes(): TypeCheckResult = {
val defaultCheck = super.checkInputDataTypes()
if (defaultCheck.isFailure) {
defaultCheck
} else {
TypeCheckSuccess
}
}
private lazy val first = AttributeReference("first", child.dataType)()
private lazy val valueSet = AttributeReference("valueSet", BooleanType)()
override lazy val aggBufferAttributes: Seq[AttributeReference] = first :: valueSet :: Nil
override lazy val initialValues: Seq[Literal] = Seq(
/* first = */ Literal.create(null, child.dataType),
/* valueSet = */ Literal.create(false, BooleanType)
)
override lazy val updateExpressions: Seq[Expression] = {
if (ignoreNulls) {
Seq(
/* first = */ If(valueSet || child.isNull, first, child),
/* valueSet = */ valueSet || child.isNotNull
)
} else {
Seq(
/* first = */ If(valueSet, first, child),
/* valueSet = */ Literal.create(true, BooleanType)
)
}
}
override lazy val mergeExpressions: Seq[Expression] = {
// For first, we can just check if valueSet.left is set to true. If it is set
// to true, we use first.right. If not, we use first.right (even if valueSet.right is
// false, we are safe to do so because first.right will be null in this case).
Seq(
/* first = */ If(valueSet.left, first.left, first.right),
/* valueSet = */ valueSet.left || valueSet.right
)
}
override lazy val evaluateExpression: AttributeReference = first
override def toString: String = s"$prettyName($child)${if (ignoreNulls) " ignore nulls"}"
override protected def withNewChildInternal(newChild: Expression): First = copy(child = newChild)
}
object FirstLast {
def validateIgnoreNullExpr(exp: Expression, funcName: String): Boolean = exp match {
case Literal(b: Boolean, BooleanType) => b
case _ => throw QueryCompilationErrors.secondArgumentInFunctionIsNotBooleanLiteralError(
funcName)
}
}
相关信息
相关文章
spark ApproxCountDistinctForIntervals 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦