spark Covariance 源码
spark Covariance 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Covariance.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.expressions.aggregate
import org.apache.spark.sql.catalyst.dsl.expressions._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.trees.BinaryLike
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._
/**
* Compute the covariance between two expressions.
* When applied on empty data (i.e., count is zero), it returns NULL.
*/
abstract class Covariance(val left: Expression, val right: Expression, nullOnDivideByZero: Boolean)
extends DeclarativeAggregate with ImplicitCastInputTypes with BinaryLike[Expression] {
override def nullable: Boolean = true
override def dataType: DataType = DoubleType
override def inputTypes: Seq[AbstractDataType] = Seq(DoubleType, DoubleType)
protected[sql] val n = AttributeReference("n", DoubleType, nullable = false)()
protected[sql] val xAvg = AttributeReference("xAvg", DoubleType, nullable = false)()
protected[sql] val yAvg = AttributeReference("yAvg", DoubleType, nullable = false)()
protected[sql] val ck = AttributeReference("ck", DoubleType, nullable = false)()
protected def divideByZeroEvalResult: Expression = {
if (nullOnDivideByZero) Literal.create(null, DoubleType) else Double.NaN
}
override def stringArgs: Iterator[Any] =
super.stringArgs.filter(_.isInstanceOf[Expression])
override val aggBufferAttributes: Seq[AttributeReference] = Seq(n, xAvg, yAvg, ck)
override val initialValues: Seq[Expression] = Array.fill(4)(Literal(0.0))
override lazy val updateExpressions: Seq[Expression] = updateExpressionsDef
override val mergeExpressions: Seq[Expression] = {
val n1 = n.left
val n2 = n.right
val newN = n1 + n2
val dx = xAvg.right - xAvg.left
val dxN = If(newN === 0.0, 0.0, dx / newN)
val dy = yAvg.right - yAvg.left
val dyN = If(newN === 0.0, 0.0, dy / newN)
val newXAvg = xAvg.left + dxN * n2
val newYAvg = yAvg.left + dyN * n2
val newCk = ck.left + ck.right + dx * dyN * n1 * n2
Seq(newN, newXAvg, newYAvg, newCk)
}
protected def updateExpressionsDef: Seq[Expression] = {
val newN = n + 1.0
val dx = left - xAvg
val dy = right - yAvg
val dyN = dy / newN
val newXAvg = xAvg + dx / newN
val newYAvg = yAvg + dyN
val newCk = ck + dx * (right - newYAvg)
val isNull = left.isNull || right.isNull
Seq(
If(isNull, n, newN),
If(isNull, xAvg, newXAvg),
If(isNull, yAvg, newYAvg),
If(isNull, ck, newCk)
)
}
}
@ExpressionDescription(
usage = "_FUNC_(expr1, expr2) - Returns the population covariance of a set of number pairs.",
examples = """
Examples:
> SELECT _FUNC_(c1, c2) FROM VALUES (1,1), (2,2), (3,3) AS tab(c1, c2);
0.6666666666666666
""",
group = "agg_funcs",
since = "2.0.0")
case class CovPopulation(
override val left: Expression,
override val right: Expression,
nullOnDivideByZero: Boolean = !SQLConf.get.legacyStatisticalAggregate)
extends Covariance(left, right, nullOnDivideByZero) {
def this(left: Expression, right: Expression) =
this(left, right, !SQLConf.get.legacyStatisticalAggregate)
override val evaluateExpression: Expression = {
If(n === 0.0, Literal.create(null, DoubleType), ck / n)
}
override def prettyName: String = "covar_pop"
override protected def withNewChildrenInternal(
newLeft: Expression, newRight: Expression): CovPopulation =
copy(left = newLeft, right = newRight)
}
@ExpressionDescription(
usage = "_FUNC_(expr1, expr2) - Returns the sample covariance of a set of number pairs.",
examples = """
Examples:
> SELECT _FUNC_(c1, c2) FROM VALUES (1,1), (2,2), (3,3) AS tab(c1, c2);
1.0
""",
group = "agg_funcs",
since = "2.0.0")
case class CovSample(
override val left: Expression,
override val right: Expression,
nullOnDivideByZero: Boolean = !SQLConf.get.legacyStatisticalAggregate)
extends Covariance(left, right, nullOnDivideByZero) {
def this(left: Expression, right: Expression) =
this(left, right, !SQLConf.get.legacyStatisticalAggregate)
override val evaluateExpression: Expression = {
If(n === 0.0, Literal.create(null, DoubleType),
If(n === 1.0, divideByZeroEvalResult, ck / (n - 1.0)))
}
override def prettyName: String = "covar_samp"
override protected def withNewChildrenInternal(
newLeft: Expression, newRight: Expression): CovSample = copy(left = newLeft, right = newRight)
}
/**
* Covariance in Pandas' fashion. This expression is dedicated only for Pandas API on Spark.
* Refer to numpy.cov.
*/
case class PandasCovar(
override val left: Expression,
override val right: Expression,
ddof: Int)
extends Covariance(left, right, true) {
override val evaluateExpression: Expression = {
If(n === 0.0, Literal.create(null, DoubleType),
If(n === ddof, divideByZeroEvalResult, ck / (n - ddof)))
}
override def prettyName: String = "pandas_covar"
override protected def withNewChildrenInternal(
newLeft: Expression,
newRight: Expression): PandasCovar =
copy(left = newLeft, right = newRight)
}
相关信息
相关文章
spark ApproxCountDistinctForIntervals 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦