spark LinearRegressionWrapper 源码

  • 2022-10-20
  • 浏览 (204)

spark LinearRegressionWrapper 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/LinearRegressionWrapper.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.r

import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.r.RWrapperUtils._
import org.apache.spark.ml.regression.{LinearRegression, LinearRegressionModel}
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}

private[r] class LinearRegressionWrapper private (
    val pipeline: PipelineModel,
    val features: Array[String]) extends MLWritable {

  private val linearRegressionModel: LinearRegressionModel =
    pipeline.stages(1).asInstanceOf[LinearRegressionModel]

  lazy val rFeatures: Array[String] = if (linearRegressionModel.getFitIntercept) {
    Array("(Intercept)") ++ features
  } else {
    features
  }

  lazy val rCoefficients: Array[Double] = if (linearRegressionModel.getFitIntercept) {
    Array(linearRegressionModel.intercept) ++ linearRegressionModel.coefficients.toArray
  } else {
    linearRegressionModel.coefficients.toArray
  }

  lazy val numFeatures: Int = linearRegressionModel.numFeatures

  def transform(dataset: Dataset[_]): DataFrame = {
    pipeline.transform(dataset)
      .drop(linearRegressionModel.getFeaturesCol)
  }

  override def write: MLWriter = new LinearRegressionWrapper.LinearRegressionWrapperWriter(this)
}

private[r] object LinearRegressionWrapper
  extends MLReadable[LinearRegressionWrapper] {

  def fit(  // scalastyle:ignore
      data: DataFrame,
      formula: String,
      maxIter: Int,
      regParam: Double,
      elasticNetParam: Double,
      tol: Double,
      standardization: Boolean,
      solver: String,
      weightCol: String,
      aggregationDepth: Int,
      loss: String,
      epsilon: Double,
      stringIndexerOrderType: String): LinearRegressionWrapper = {

    val rFormula = new RFormula()
      .setFormula(formula)
      .setStringIndexerOrderType(stringIndexerOrderType)
    checkDataColumns(rFormula, data)
    val rFormulaModel = rFormula.fit(data)

    val fitIntercept = rFormula.hasIntercept

    // get feature names from output schema
    val schema = rFormulaModel.transform(data).schema
    val featureAttrs = AttributeGroup.fromStructField(schema(rFormulaModel.getFeaturesCol))
      .attributes.get
    val features = featureAttrs.map(_.name.get)

    // assemble and fit the pipeline
    val lm = new LinearRegression()
      .setMaxIter(maxIter)
      .setRegParam(regParam)
      .setElasticNetParam(elasticNetParam)
      .setTol(tol)
      .setFitIntercept(fitIntercept)
      .setStandardization(standardization)
      .setSolver(solver)
      .setAggregationDepth(aggregationDepth)
      .setLoss(loss)
      .setEpsilon(epsilon)
      .setFeaturesCol(rFormula.getFeaturesCol)

    if (weightCol != null) {
      lm.setWeightCol(weightCol)
    }

    val pipeline = new Pipeline()
      .setStages(Array(rFormulaModel, lm))
      .fit(data)

    new LinearRegressionWrapper(pipeline, features)
  }

  override def read: MLReader[LinearRegressionWrapper] = new LinearRegressionWrapperReader

  class LinearRegressionWrapperWriter(instance: LinearRegressionWrapper) extends MLWriter {
    override protected def saveImpl(path: String): Unit = {
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadata = ("class" -> instance.getClass.getName) ~
        ("features" -> instance.features.toSeq)
      val rMetadataJson: String = compact(render(rMetadata))
      sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)

      instance.pipeline.save(pipelinePath)
    }
  }

  class LinearRegressionWrapperReader extends MLReader[LinearRegressionWrapper] {

    override def load(path: String): LinearRegressionWrapper = {
      implicit val format = DefaultFormats
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
      val rMetadata = parse(rMetadataStr)
      val features = (rMetadata \ "features").extract[Array[String]]

      val pipeline = PipelineModel.load(pipelinePath)
      new LinearRegressionWrapper(pipeline, features)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionWrapper 源码

spark ALSWrapper 源码

spark BisectingKMeansWrapper 源码

spark DecisionTreeClassifierWrapper 源码

spark DecisionTreeRegressorWrapper 源码

spark FMClassifierWrapper 源码

spark FMRegressorWrapper 源码

spark FPGrowthWrapper 源码

spark GBTClassifierWrapper 源码

spark GBTRegressorWrapper 源码

0  赞