spark GBTRegressorWrapper 源码

  • 2022-10-20
  • 浏览 (194)

spark GBTRegressorWrapper 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/GBTRegressorWrapper.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.r

import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.regression.{GBTRegressionModel, GBTRegressor}
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}

private[r] class GBTRegressorWrapper private (
  val pipeline: PipelineModel,
  val formula: String,
  val features: Array[String]) extends MLWritable {

  private val gbtrModel: GBTRegressionModel =
    pipeline.stages(1).asInstanceOf[GBTRegressionModel]

  lazy val numFeatures: Int = gbtrModel.numFeatures
  lazy val featureImportances: Vector = gbtrModel.featureImportances
  lazy val numTrees: Int = gbtrModel.getNumTrees
  lazy val treeWeights: Array[Double] = gbtrModel.treeWeights
  lazy val maxDepth: Int = gbtrModel.getMaxDepth

  def summary: String = gbtrModel.toDebugString

  def transform(dataset: Dataset[_]): DataFrame = {
    pipeline.transform(dataset).drop(gbtrModel.getFeaturesCol)
  }

  override def write: MLWriter = new
      GBTRegressorWrapper.GBTRegressorWrapperWriter(this)
}

private[r] object GBTRegressorWrapper extends MLReadable[GBTRegressorWrapper] {
  def fit(  // scalastyle:ignore
      data: DataFrame,
      formula: String,
      maxDepth: Int,
      maxBins: Int,
      maxIter: Int,
      stepSize: Double,
      minInstancesPerNode: Int,
      minInfoGain: Double,
      checkpointInterval: Int,
      lossType: String,
      seed: String,
      subsamplingRate: Double,
      maxMemoryInMB: Int,
      cacheNodeIds: Boolean): GBTRegressorWrapper = {

    val rFormula = new RFormula()
      .setFormula(formula)
    RWrapperUtils.checkDataColumns(rFormula, data)
    val rFormulaModel = rFormula.fit(data)

    // get feature names from output schema
    val schema = rFormulaModel.transform(data).schema
    val featureAttrs = AttributeGroup.fromStructField(schema(rFormulaModel.getFeaturesCol))
      .attributes.get
    val features = featureAttrs.map(_.name.get)

    // assemble and fit the pipeline
    val rfr = new GBTRegressor()
      .setMaxDepth(maxDepth)
      .setMaxBins(maxBins)
      .setMaxIter(maxIter)
      .setStepSize(stepSize)
      .setMinInstancesPerNode(minInstancesPerNode)
      .setMinInfoGain(minInfoGain)
      .setCheckpointInterval(checkpointInterval)
      .setLossType(lossType)
      .setSubsamplingRate(subsamplingRate)
      .setMaxMemoryInMB(maxMemoryInMB)
      .setCacheNodeIds(cacheNodeIds)
      .setFeaturesCol(rFormula.getFeaturesCol)
    if (seed != null && seed.length > 0) rfr.setSeed(seed.toLong)

    val pipeline = new Pipeline()
      .setStages(Array(rFormulaModel, rfr))
      .fit(data)

    new GBTRegressorWrapper(pipeline, formula, features)
  }

  override def read: MLReader[GBTRegressorWrapper] = new GBTRegressorWrapperReader

  override def load(path: String): GBTRegressorWrapper = super.load(path)

  class GBTRegressorWrapperWriter(instance: GBTRegressorWrapper)
    extends MLWriter {

    override protected def saveImpl(path: String): Unit = {
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadata = ("class" -> instance.getClass.getName) ~
        ("formula" -> instance.formula) ~
        ("features" -> instance.features.toSeq)
      val rMetadataJson: String = compact(render(rMetadata))

      sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
      instance.pipeline.save(pipelinePath)
    }
  }

  class GBTRegressorWrapperReader extends MLReader[GBTRegressorWrapper] {

    override def load(path: String): GBTRegressorWrapper = {
      implicit val format = DefaultFormats
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString
      val pipeline = PipelineModel.load(pipelinePath)

      val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
      val rMetadata = parse(rMetadataStr)
      val formula = (rMetadata \ "formula").extract[String]
      val features = (rMetadata \ "features").extract[Array[String]]

      new GBTRegressorWrapper(pipeline, formula, features)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionWrapper 源码

spark ALSWrapper 源码

spark BisectingKMeansWrapper 源码

spark DecisionTreeClassifierWrapper 源码

spark DecisionTreeRegressorWrapper 源码

spark FMClassifierWrapper 源码

spark FMRegressorWrapper 源码

spark FPGrowthWrapper 源码

spark GBTClassifierWrapper 源码

spark GaussianMixtureWrapper 源码

0  赞