spark BisectingKMeansWrapper 源码

  • 2022-10-20
  • 浏览 (207)

spark BisectingKMeansWrapper 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/BisectingKMeansWrapper.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.r

import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.clustering.{BisectingKMeans, BisectingKMeansModel}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}

private[r] class BisectingKMeansWrapper private (
    val pipeline: PipelineModel,
    val features: Array[String],
    val size: Array[Long],
    val isLoaded: Boolean = false) extends MLWritable {
  private val bisectingKmeansModel: BisectingKMeansModel =
    pipeline.stages.last.asInstanceOf[BisectingKMeansModel]

  lazy val coefficients: Array[Double] = bisectingKmeansModel.clusterCenters.flatMap(_.toArray)

  lazy val k: Int = bisectingKmeansModel.getK

  // If the model is loaded from a saved model, cluster is NULL. It is checked on R side
  lazy val cluster: DataFrame = bisectingKmeansModel.summary.cluster

  def fitted(method: String): DataFrame = {
    if (method == "centers") {
      bisectingKmeansModel.summary.predictions.drop(bisectingKmeansModel.getFeaturesCol)
    } else if (method == "classes") {
      bisectingKmeansModel.summary.cluster
    } else {
      throw new UnsupportedOperationException(
        s"Method (centers or classes) required but $method found.")
    }
  }

  def transform(dataset: Dataset[_]): DataFrame = {
    pipeline.transform(dataset).drop(bisectingKmeansModel.getFeaturesCol)
  }

  override def write: MLWriter = new BisectingKMeansWrapper.BisectingKMeansWrapperWriter(this)
}

private[r] object BisectingKMeansWrapper extends MLReadable[BisectingKMeansWrapper] {

  def fit(
      data: DataFrame,
      formula: String,
      k: Int,
      maxIter: Int,
      seed: String,
      minDivisibleClusterSize: Double
      ): BisectingKMeansWrapper = {

    val rFormula = new RFormula()
      .setFormula(formula)
      .setFeaturesCol("features")
    RWrapperUtils.checkDataColumns(rFormula, data)
    val rFormulaModel = rFormula.fit(data)

    // get feature names from output schema
    val schema = rFormulaModel.transform(data).schema
    val featureAttrs = AttributeGroup.fromStructField(schema(rFormulaModel.getFeaturesCol))
      .attributes.get
    val features = featureAttrs.map(_.name.get)

    val bisectingKmeans = new BisectingKMeans()
      .setK(k)
      .setMaxIter(maxIter)
      .setMinDivisibleClusterSize(minDivisibleClusterSize)
      .setFeaturesCol(rFormula.getFeaturesCol)

    if (seed != null && seed.length > 0) bisectingKmeans.setSeed(seed.toInt)

    val pipeline = new Pipeline()
      .setStages(Array(rFormulaModel, bisectingKmeans))
      .fit(data)

    val bisectingKmeansModel: BisectingKMeansModel =
      pipeline.stages.last.asInstanceOf[BisectingKMeansModel]
    val size: Array[Long] = bisectingKmeansModel.summary.clusterSizes

    new BisectingKMeansWrapper(pipeline, features, size)
  }

  override def read: MLReader[BisectingKMeansWrapper] = new BisectingKMeansWrapperReader

  override def load(path: String): BisectingKMeansWrapper = super.load(path)

  class BisectingKMeansWrapperWriter(instance: BisectingKMeansWrapper) extends MLWriter {

    override protected def saveImpl(path: String): Unit = {
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadata = ("class" -> instance.getClass.getName) ~
        ("features" -> instance.features.toSeq) ~
        ("size" -> instance.size.toSeq)
      val rMetadataJson: String = compact(render(rMetadata))

      sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
      instance.pipeline.save(pipelinePath)
    }
  }

  class BisectingKMeansWrapperReader extends MLReader[BisectingKMeansWrapper] {

    override def load(path: String): BisectingKMeansWrapper = {
      implicit val format = DefaultFormats
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString
      val pipeline = PipelineModel.load(pipelinePath)

      val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
      val rMetadata = parse(rMetadataStr)
      val features = (rMetadata \ "features").extract[Array[String]]
      val size = (rMetadata \ "size").extract[Array[Long]]
      new BisectingKMeansWrapper(pipeline, features, size, isLoaded = true)
    }
  }

}

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionWrapper 源码

spark ALSWrapper 源码

spark DecisionTreeClassifierWrapper 源码

spark DecisionTreeRegressorWrapper 源码

spark FMClassifierWrapper 源码

spark FMRegressorWrapper 源码

spark FPGrowthWrapper 源码

spark GBTClassifierWrapper 源码

spark GBTRegressorWrapper 源码

spark GaussianMixtureWrapper 源码

0  赞