spark BisectingKMeansWrapper 源码
spark BisectingKMeansWrapper 代码
文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/BisectingKMeansWrapper.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.r
import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.clustering.{BisectingKMeans, BisectingKMeansModel}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}
private[r] class BisectingKMeansWrapper private (
val pipeline: PipelineModel,
val features: Array[String],
val size: Array[Long],
val isLoaded: Boolean = false) extends MLWritable {
private val bisectingKmeansModel: BisectingKMeansModel =
pipeline.stages.last.asInstanceOf[BisectingKMeansModel]
lazy val coefficients: Array[Double] = bisectingKmeansModel.clusterCenters.flatMap(_.toArray)
lazy val k: Int = bisectingKmeansModel.getK
// If the model is loaded from a saved model, cluster is NULL. It is checked on R side
lazy val cluster: DataFrame = bisectingKmeansModel.summary.cluster
def fitted(method: String): DataFrame = {
if (method == "centers") {
bisectingKmeansModel.summary.predictions.drop(bisectingKmeansModel.getFeaturesCol)
} else if (method == "classes") {
bisectingKmeansModel.summary.cluster
} else {
throw new UnsupportedOperationException(
s"Method (centers or classes) required but $method found.")
}
}
def transform(dataset: Dataset[_]): DataFrame = {
pipeline.transform(dataset).drop(bisectingKmeansModel.getFeaturesCol)
}
override def write: MLWriter = new BisectingKMeansWrapper.BisectingKMeansWrapperWriter(this)
}
private[r] object BisectingKMeansWrapper extends MLReadable[BisectingKMeansWrapper] {
def fit(
data: DataFrame,
formula: String,
k: Int,
maxIter: Int,
seed: String,
minDivisibleClusterSize: Double
): BisectingKMeansWrapper = {
val rFormula = new RFormula()
.setFormula(formula)
.setFeaturesCol("features")
RWrapperUtils.checkDataColumns(rFormula, data)
val rFormulaModel = rFormula.fit(data)
// get feature names from output schema
val schema = rFormulaModel.transform(data).schema
val featureAttrs = AttributeGroup.fromStructField(schema(rFormulaModel.getFeaturesCol))
.attributes.get
val features = featureAttrs.map(_.name.get)
val bisectingKmeans = new BisectingKMeans()
.setK(k)
.setMaxIter(maxIter)
.setMinDivisibleClusterSize(minDivisibleClusterSize)
.setFeaturesCol(rFormula.getFeaturesCol)
if (seed != null && seed.length > 0) bisectingKmeans.setSeed(seed.toInt)
val pipeline = new Pipeline()
.setStages(Array(rFormulaModel, bisectingKmeans))
.fit(data)
val bisectingKmeansModel: BisectingKMeansModel =
pipeline.stages.last.asInstanceOf[BisectingKMeansModel]
val size: Array[Long] = bisectingKmeansModel.summary.clusterSizes
new BisectingKMeansWrapper(pipeline, features, size)
}
override def read: MLReader[BisectingKMeansWrapper] = new BisectingKMeansWrapperReader
override def load(path: String): BisectingKMeansWrapper = super.load(path)
class BisectingKMeansWrapperWriter(instance: BisectingKMeansWrapper) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadata = ("class" -> instance.getClass.getName) ~
("features" -> instance.features.toSeq) ~
("size" -> instance.size.toSeq)
val rMetadataJson: String = compact(render(rMetadata))
sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
instance.pipeline.save(pipelinePath)
}
}
class BisectingKMeansWrapperReader extends MLReader[BisectingKMeansWrapper] {
override def load(path: String): BisectingKMeansWrapper = {
implicit val format = DefaultFormats
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val pipeline = PipelineModel.load(pipelinePath)
val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
val rMetadata = parse(rMetadataStr)
val features = (rMetadata \ "features").extract[Array[String]]
val size = (rMetadata \ "size").extract[Array[Long]]
new BisectingKMeansWrapper(pipeline, features, size, isLoaded = true)
}
}
}
相关信息
相关文章
spark AFTSurvivalRegressionWrapper 源码
spark DecisionTreeClassifierWrapper 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦