spark FMRegressorWrapper 源码

  • 2022-10-20
  • 浏览 (242)

spark FMRegressorWrapper 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/FMRegressorWrapper.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.r

import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.r.RWrapperUtils._
import org.apache.spark.ml.regression.{FMRegressionModel, FMRegressor}
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}

private[r] class FMRegressorWrapper private (
    val pipeline: PipelineModel,
    val features: Array[String]) extends MLWritable {

  private val fmRegressionModel: FMRegressionModel =
    pipeline.stages(1).asInstanceOf[FMRegressionModel]

  lazy val rFeatures: Array[String] = if (fmRegressionModel.getFitIntercept) {
    Array("(Intercept)") ++ features
  } else {
    features
  }

  lazy val rCoefficients: Array[Double] = if (fmRegressionModel.getFitIntercept) {
    Array(fmRegressionModel.intercept) ++ fmRegressionModel.linear.toArray
  } else {
    fmRegressionModel.linear.toArray
  }

  lazy val rFactors = fmRegressionModel.factors.toArray

  lazy val numFeatures: Int = fmRegressionModel.numFeatures

  lazy val factorSize: Int = fmRegressionModel.getFactorSize

  def transform(dataset: Dataset[_]): DataFrame = {
    pipeline.transform(dataset)
      .drop(fmRegressionModel.getFeaturesCol)
  }

  override def write: MLWriter = new FMRegressorWrapper.FMRegressorWrapperWriter(this)
}

private[r] object FMRegressorWrapper
  extends MLReadable[FMRegressorWrapper] {

  def fit(  // scalastyle:ignore
      data: DataFrame,
      formula: String,
      factorSize: Int,
      fitLinear: Boolean,
      regParam: Double,
      miniBatchFraction: Double,
      initStd: Double,
      maxIter: Int,
      stepSize: Double,
      tol: Double,
      solver: String,
      seed: String,
      stringIndexerOrderType: String): FMRegressorWrapper = {

    val rFormula = new RFormula()
      .setFormula(formula)
      .setStringIndexerOrderType(stringIndexerOrderType)
    checkDataColumns(rFormula, data)
    val rFormulaModel = rFormula.fit(data)

    val fitIntercept = rFormula.hasIntercept

    // get feature names from output schema
    val schema = rFormulaModel.transform(data).schema
    val featureAttrs = AttributeGroup.fromStructField(schema(rFormulaModel.getFeaturesCol))
      .attributes.get
    val features = featureAttrs.map(_.name.get)

    // assemble and fit the pipeline
    val fmr = new FMRegressor()
      .setFactorSize(factorSize)
      .setFitIntercept(fitIntercept)
      .setFitLinear(fitLinear)
      .setRegParam(regParam)
      .setMiniBatchFraction(miniBatchFraction)
      .setInitStd(initStd)
      .setMaxIter(maxIter)
      .setStepSize(stepSize)
      .setTol(tol)
      .setSolver(solver)
      .setFeaturesCol(rFormula.getFeaturesCol)

    if (seed != null && seed.length > 0) {
      fmr.setSeed(seed.toLong)
    }

    val pipeline = new Pipeline()
      .setStages(Array(rFormulaModel, fmr))
      .fit(data)

    new FMRegressorWrapper(pipeline, features)
  }

  override def read: MLReader[FMRegressorWrapper] = new FMRegressorWrapperReader

  class FMRegressorWrapperWriter(instance: FMRegressorWrapper) extends MLWriter {

    override protected def saveImpl(path: String): Unit = {
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadata = ("class" -> instance.getClass.getName) ~
        ("features" -> instance.features.toSeq)
      val rMetadataJson: String = compact(render(rMetadata))
      sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)

      instance.pipeline.save(pipelinePath)
    }
  }

  class FMRegressorWrapperReader extends MLReader[FMRegressorWrapper] {

    override def load(path: String): FMRegressorWrapper = {
      implicit val format = DefaultFormats
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
      val rMetadata = parse(rMetadataStr)
      val features = (rMetadata \ "features").extract[Array[String]]

      val pipeline = PipelineModel.load(pipelinePath)
      new FMRegressorWrapper(pipeline, features)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionWrapper 源码

spark ALSWrapper 源码

spark BisectingKMeansWrapper 源码

spark DecisionTreeClassifierWrapper 源码

spark DecisionTreeRegressorWrapper 源码

spark FMClassifierWrapper 源码

spark FPGrowthWrapper 源码

spark GBTClassifierWrapper 源码

spark GBTRegressorWrapper 源码

spark GaussianMixtureWrapper 源码

0  赞