spark DecisionTreeClassifierWrapper 源码

  • 2022-10-20
  • 浏览 (231)

spark DecisionTreeClassifierWrapper 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/DecisionTreeClassifierWrapper.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.r

import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, DecisionTreeClassifier}
import org.apache.spark.ml.feature.{IndexToString, RFormula}
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.r.RWrapperUtils._
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}

private[r] class DecisionTreeClassifierWrapper private (
  val pipeline: PipelineModel,
  val formula: String,
  val features: Array[String]) extends MLWritable {

  import DecisionTreeClassifierWrapper._

  private val dtcModel: DecisionTreeClassificationModel =
    pipeline.stages(1).asInstanceOf[DecisionTreeClassificationModel]

  lazy val numFeatures: Int = dtcModel.numFeatures
  lazy val featureImportances: Vector = dtcModel.featureImportances
  lazy val maxDepth: Int = dtcModel.getMaxDepth

  def summary: String = dtcModel.toDebugString

  def transform(dataset: Dataset[_]): DataFrame = {
    pipeline.transform(dataset)
      .drop(PREDICTED_LABEL_INDEX_COL)
      .drop(dtcModel.getFeaturesCol)
      .drop(dtcModel.getLabelCol)
  }

  override def write: MLWriter = new
      DecisionTreeClassifierWrapper.DecisionTreeClassifierWrapperWriter(this)
}

private[r] object DecisionTreeClassifierWrapper extends MLReadable[DecisionTreeClassifierWrapper] {

  val PREDICTED_LABEL_INDEX_COL = "pred_label_idx"
  val PREDICTED_LABEL_COL = "prediction"

  def fit(  // scalastyle:ignore
      data: DataFrame,
      formula: String,
      maxDepth: Int,
      maxBins: Int,
      impurity: String,
      minInstancesPerNode: Int,
      minInfoGain: Double,
      checkpointInterval: Int,
      seed: String,
      maxMemoryInMB: Int,
      cacheNodeIds: Boolean,
      handleInvalid: String): DecisionTreeClassifierWrapper = {

    val rFormula = new RFormula()
      .setFormula(formula)
      .setForceIndexLabel(true)
      .setHandleInvalid(handleInvalid)
    checkDataColumns(rFormula, data)
    val rFormulaModel = rFormula.fit(data)

    // get labels and feature names from output schema
    val (features, labels) = getFeaturesAndLabels(rFormulaModel, data)

    // assemble and fit the pipeline
    val dtc = new DecisionTreeClassifier()
      .setMaxDepth(maxDepth)
      .setMaxBins(maxBins)
      .setImpurity(impurity)
      .setMinInstancesPerNode(minInstancesPerNode)
      .setMinInfoGain(minInfoGain)
      .setCheckpointInterval(checkpointInterval)
      .setMaxMemoryInMB(maxMemoryInMB)
      .setCacheNodeIds(cacheNodeIds)
      .setFeaturesCol(rFormula.getFeaturesCol)
      .setLabelCol(rFormula.getLabelCol)
      .setPredictionCol(PREDICTED_LABEL_INDEX_COL)
    if (seed != null && seed.length > 0) dtc.setSeed(seed.toLong)

    val idxToStr = new IndexToString()
      .setInputCol(PREDICTED_LABEL_INDEX_COL)
      .setOutputCol(PREDICTED_LABEL_COL)
      .setLabels(labels)

    val pipeline = new Pipeline()
      .setStages(Array(rFormulaModel, dtc, idxToStr))
      .fit(data)

    new DecisionTreeClassifierWrapper(pipeline, formula, features)
  }

  override def read: MLReader[DecisionTreeClassifierWrapper] =
    new DecisionTreeClassifierWrapperReader

  override def load(path: String): DecisionTreeClassifierWrapper = super.load(path)

  class DecisionTreeClassifierWrapperWriter(instance: DecisionTreeClassifierWrapper)
    extends MLWriter {

    override protected def saveImpl(path: String): Unit = {
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadata = ("class" -> instance.getClass.getName) ~
        ("formula" -> instance.formula) ~
        ("features" -> instance.features.toSeq)
      val rMetadataJson: String = compact(render(rMetadata))

      sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
      instance.pipeline.save(pipelinePath)
    }
  }

  class DecisionTreeClassifierWrapperReader extends MLReader[DecisionTreeClassifierWrapper] {

    override def load(path: String): DecisionTreeClassifierWrapper = {
      implicit val format = DefaultFormats
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString
      val pipeline = PipelineModel.load(pipelinePath)

      val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
      val rMetadata = parse(rMetadataStr)
      val formula = (rMetadata \ "formula").extract[String]
      val features = (rMetadata \ "features").extract[Array[String]]

      new DecisionTreeClassifierWrapper(pipeline, formula, features)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionWrapper 源码

spark ALSWrapper 源码

spark BisectingKMeansWrapper 源码

spark DecisionTreeRegressorWrapper 源码

spark FMClassifierWrapper 源码

spark FMRegressorWrapper 源码

spark FPGrowthWrapper 源码

spark GBTClassifierWrapper 源码

spark GBTRegressorWrapper 源码

spark GaussianMixtureWrapper 源码

0  赞