spark MinHashLSH 源码

  • 2022-10-20
  • 浏览 (253)

spark MinHashLSH 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/MinHashLSH.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import scala.util.Random

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml.linalg.{Vector, Vectors, VectorUDT}
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.param.shared.HasSeed
import org.apache.spark.ml.util._
import org.apache.spark.sql.types.StructType

/**
 * Model produced by [[MinHashLSH]], where multiple hash functions are stored. Each hash function
 * is picked from the following family of hash functions, where a_i and b_i are randomly chosen
 * integers less than prime:
 *    `h_i(x) = ((x \cdot a_i + b_i) \mod prime)`
 *
 * This hash family is approximately min-wise independent according to the reference.
 *
 * Reference:
 * Tom Bohman, Colin Cooper, and Alan Frieze. "Min-wise independent linear permutations."
 * Electronic Journal of Combinatorics 7 (2000): R26.
 *
 * @param randCoefficients Pairs of random coefficients. Each pair is used by one hash function.
 */
@Since("2.1.0")
class MinHashLSHModel private[ml](
    override val uid: String,
    private[ml] val randCoefficients: Array[(Int, Int)])
  extends LSHModel[MinHashLSHModel] {

  /** @group setParam */
  @Since("2.4.0")
  override def setInputCol(value: String): this.type = super.set(inputCol, value)

  /** @group setParam */
  @Since("2.4.0")
  override def setOutputCol(value: String): this.type = super.set(outputCol, value)

  @Since("2.1.0")
  override protected[ml] def hashFunction(elems: Vector): Array[Vector] = {
    require(elems.nonZeroIterator.nonEmpty, "Must have at least 1 non zero entry.")
    val hashValues = randCoefficients.map { case (a, b) =>
      elems.nonZeroIterator.map { case (i, _) =>
        ((1L + i) * a + b) % MinHashLSH.HASH_PRIME
      }.min.toDouble
    }
    // TODO: Output vectors of dimension numHashFunctions in SPARK-18450
    hashValues.map(Vectors.dense(_))
  }

  @Since("2.1.0")
  override protected[ml] def keyDistance(x: Vector, y: Vector): Double = {
    val xIter = x.nonZeroIterator.map(_._1)
    val yIter = y.nonZeroIterator.map(_._1)
    if (xIter.isEmpty) {
      require(yIter.hasNext, "The union of two input sets must have at least 1 elements")
      return 1.0
    } else if (yIter.isEmpty) {
      return 1.0
    }

    var xIndex = xIter.next
    var yIndex = yIter.next
    var xSize = 1
    var ySize = 1
    var intersectionSize = 0

    while (xIndex != -1 && yIndex != -1) {
      if (xIndex == yIndex) {
        intersectionSize += 1
        xIndex = if (xIter.hasNext) { xSize += 1; xIter.next } else -1
        yIndex = if (yIter.hasNext) { ySize += 1; yIter.next } else -1
      } else if (xIndex > yIndex) {
        yIndex = if (yIter.hasNext) { ySize += 1; yIter.next } else -1
      } else {
        xIndex = if (xIter.hasNext) { xSize += 1; xIter.next } else -1
      }
    }

    xSize += xIter.size
    ySize += yIter.size

    val unionSize = xSize + ySize - intersectionSize
    require(unionSize > 0, "The union of two input sets must have at least 1 elements")
    1 - intersectionSize.toDouble / unionSize
  }

  @Since("2.1.0")
  override protected[ml] def hashDistance(x: Array[Vector], y: Array[Vector]): Double = {
    // Since it's generated by hashing, it will be a pair of dense vectors.
    // TODO: This hashDistance function requires more discussion in SPARK-18454
    var distance = Int.MaxValue
    var i = 0
    while (i < x.length) {
      val vx = x(i).toArray
      val vy = y(i).toArray
      var j = 0
      var d = 0
      while (j < vx.length && d < distance) {
        if (vx(j) != vy(j)) d += 1
        j += 1
      }
      if (d == 0) return 0.0
      if (d < distance) distance = d
      i += 1
    }
    distance
  }

  @Since("2.1.0")
  override def copy(extra: ParamMap): MinHashLSHModel = {
    val copied = new MinHashLSHModel(uid, randCoefficients).setParent(parent)
    copyValues(copied, extra)
  }

  @Since("2.1.0")
  override def write: MLWriter = new MinHashLSHModel.MinHashLSHModelWriter(this)

  @Since("3.0.0")
  override def toString: String = {
    s"MinHashLSHModel: uid=$uid, numHashTables=${$(numHashTables)}"
  }
}

/**
 * LSH class for Jaccard distance.
 *
 * The input can be dense or sparse vectors, but it is more efficient if it is sparse. For example,
 *    `Vectors.sparse(10, Array((2, 1.0), (3, 1.0), (5, 1.0)))`
 * means there are 10 elements in the space. This set contains elements 2, 3, and 5. Also, any
 * input vector must have at least 1 non-zero index, and all non-zero values are
 * treated as binary "1" values.
 *
 * References:
 * <a href="https://en.wikipedia.org/wiki/MinHash">Wikipedia on MinHash</a>
 */
@Since("2.1.0")
class MinHashLSH(override val uid: String) extends LSH[MinHashLSHModel] with HasSeed {

  @Since("2.1.0")
  override def setInputCol(value: String): this.type = super.setInputCol(value)

  @Since("2.1.0")
  override def setOutputCol(value: String): this.type = super.setOutputCol(value)

  @Since("2.1.0")
  override def setNumHashTables(value: Int): this.type = super.setNumHashTables(value)

  @Since("2.1.0")
  def this() = {
    this(Identifiable.randomUID("mh-lsh"))
  }

  /** @group setParam */
  @Since("2.1.0")
  def setSeed(value: Long): this.type = set(seed, value)

  @Since("2.1.0")
  override protected[ml] def createRawLSHModel(inputDim: Int): MinHashLSHModel = {
    require(inputDim <= MinHashLSH.HASH_PRIME,
      s"The input vector dimension $inputDim exceeds the threshold ${MinHashLSH.HASH_PRIME}.")
    val rand = new Random($(seed))
    val randCoefs: Array[(Int, Int)] = Array.fill($(numHashTables)) {
        (1 + rand.nextInt(MinHashLSH.HASH_PRIME - 1), rand.nextInt(MinHashLSH.HASH_PRIME - 1))
      }
    new MinHashLSHModel(uid, randCoefs)
  }

  @Since("2.1.0")
  override def transformSchema(schema: StructType): StructType = {
    SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
    validateAndTransformSchema(schema)
  }

  @Since("2.1.0")
  override def copy(extra: ParamMap): this.type = defaultCopy(extra)
}

@Since("2.1.0")
object MinHashLSH extends DefaultParamsReadable[MinHashLSH] {
  // A large prime smaller than sqrt(2^63 − 1)
  private[ml] val HASH_PRIME = 2038074743

  @Since("2.1.0")
  override def load(path: String): MinHashLSH = super.load(path)
}

@Since("2.1.0")
object MinHashLSHModel extends MLReadable[MinHashLSHModel] {

  @Since("2.1.0")
  override def read: MLReader[MinHashLSHModel] = new MinHashLSHModelReader

  @Since("2.1.0")
  override def load(path: String): MinHashLSHModel = super.load(path)

  private[MinHashLSHModel] class MinHashLSHModelWriter(instance: MinHashLSHModel)
    extends MLWriter {

    private case class Data(randCoefficients: Array[Int])

    override protected def saveImpl(path: String): Unit = {
      DefaultParamsWriter.saveMetadata(instance, path, sc)
      val data = Data(instance.randCoefficients.flatMap(tuple => Array(tuple._1, tuple._2)))
      val dataPath = new Path(path, "data").toString
      sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
    }
  }

  private class MinHashLSHModelReader extends MLReader[MinHashLSHModel] {

    /** Checked against metadata when loading model */
    private val className = classOf[MinHashLSHModel].getName

    override def load(path: String): MinHashLSHModel = {
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)

      val dataPath = new Path(path, "data").toString
      val data = sparkSession.read.parquet(dataPath).select("randCoefficients").head()
      val randCoefficients = data.getSeq[Int](0).grouped(2)
        .map(tuple => (tuple(0), tuple(1))).toArray
      val model = new MinHashLSHModel(metadata.uid, randCoefficients)

      metadata.getAndSetParams(model)
      model
    }
  }
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

0  赞