spark ElementwiseProduct 源码
spark ElementwiseProduct 代码
文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/ElementwiseProduct.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.feature
import org.apache.spark.annotation.Since
import org.apache.spark.ml.UnaryTransformer
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param.Param
import org.apache.spark.ml.util._
import org.apache.spark.mllib.feature.{ElementwiseProduct => OldElementwiseProduct}
import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.sql.types._
/**
* Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a
* provided "weight" vector. In other words, it scales each column of the dataset by a scalar
* multiplier.
*/
@Since("1.4.0")
class ElementwiseProduct @Since("1.4.0") (@Since("1.4.0") override val uid: String)
extends UnaryTransformer[Vector, Vector, ElementwiseProduct] with DefaultParamsWritable {
@Since("1.4.0")
def this() = this(Identifiable.randomUID("elemProd"))
/**
* the vector to multiply with input vectors
* @group param
*/
@Since("2.0.0")
val scalingVec: Param[Vector] = new Param(this, "scalingVec", "vector for hadamard product")
/** @group setParam */
@Since("2.0.0")
def setScalingVec(value: Vector): this.type = set(scalingVec, value)
/** @group getParam */
@Since("2.0.0")
def getScalingVec: Vector = getOrDefault(scalingVec)
override protected def createTransformFunc: Vector => Vector = {
require(params.contains(scalingVec), s"transformation requires a weight vector")
val elemScaler = new OldElementwiseProduct(OldVectors.fromML($(scalingVec)))
val vectorSize = $(scalingVec).size
vector: Vector => {
require(vector.size == vectorSize,
s"vector sizes do not match: Expected $vectorSize but found ${vector.size}")
vector match {
case DenseVector(values) =>
val newValues = elemScaler.transformDense(values)
Vectors.dense(newValues)
case SparseVector(size, indices, values) =>
val (newIndices, newValues) = elemScaler.transformSparse(indices, values)
Vectors.sparse(size, newIndices, newValues)
case other =>
throw new UnsupportedOperationException(
s"Only sparse and dense vectors are supported but got ${other.getClass}.")
}
}
}
override protected def validateInputType(inputType: DataType): Unit = {
require(inputType.isInstanceOf[VectorUDT],
s"Input type must be ${(new VectorUDT).catalogString} but got ${inputType.catalogString}.")
}
override protected def outputDataType: DataType = new VectorUDT()
override def transformSchema(schema: StructType): StructType = {
var outputSchema = super.transformSchema(schema)
if ($(outputCol).nonEmpty) {
outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
$(outputCol), $(scalingVec).size)
}
outputSchema
}
@Since("3.0.0")
override def toString: String = {
s"ElementwiseProduct: uid=$uid" +
get(scalingVec).map(v => s", vectorSize=${v.size}").getOrElse("")
}
}
@Since("2.0.0")
object ElementwiseProduct extends DefaultParamsReadable[ElementwiseProduct] {
@Since("2.0.0")
override def load(path: String): ElementwiseProduct = super.load(path)
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦