spark ElementwiseProduct 源码

  • 2022-10-20
  • 浏览 (258)

spark ElementwiseProduct 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/ElementwiseProduct.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import org.apache.spark.annotation.Since
import org.apache.spark.ml.UnaryTransformer
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param.Param
import org.apache.spark.ml.util._
import org.apache.spark.mllib.feature.{ElementwiseProduct => OldElementwiseProduct}
import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.sql.types._

/**
 * Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a
 * provided "weight" vector.  In other words, it scales each column of the dataset by a scalar
 * multiplier.
 */
@Since("1.4.0")
class ElementwiseProduct @Since("1.4.0") (@Since("1.4.0") override val uid: String)
  extends UnaryTransformer[Vector, Vector, ElementwiseProduct] with DefaultParamsWritable {

  @Since("1.4.0")
  def this() = this(Identifiable.randomUID("elemProd"))

  /**
   * the vector to multiply with input vectors
   * @group param
   */
  @Since("2.0.0")
  val scalingVec: Param[Vector] = new Param(this, "scalingVec", "vector for hadamard product")

  /** @group setParam */
  @Since("2.0.0")
  def setScalingVec(value: Vector): this.type = set(scalingVec, value)

  /** @group getParam */
  @Since("2.0.0")
  def getScalingVec: Vector = getOrDefault(scalingVec)

  override protected def createTransformFunc: Vector => Vector = {
    require(params.contains(scalingVec), s"transformation requires a weight vector")
    val elemScaler = new OldElementwiseProduct(OldVectors.fromML($(scalingVec)))
    val vectorSize = $(scalingVec).size

    vector: Vector => {
      require(vector.size == vectorSize,
        s"vector sizes do not match: Expected $vectorSize but found ${vector.size}")
      vector match {
        case DenseVector(values) =>
          val newValues = elemScaler.transformDense(values)
          Vectors.dense(newValues)
        case SparseVector(size, indices, values) =>
          val (newIndices, newValues) = elemScaler.transformSparse(indices, values)
          Vectors.sparse(size, newIndices, newValues)
        case other =>
          throw new UnsupportedOperationException(
            s"Only sparse and dense vectors are supported but got ${other.getClass}.")
      }
    }
  }

  override protected def validateInputType(inputType: DataType): Unit = {
    require(inputType.isInstanceOf[VectorUDT],
      s"Input type must be ${(new VectorUDT).catalogString} but got ${inputType.catalogString}.")
  }

  override protected def outputDataType: DataType = new VectorUDT()

  override def transformSchema(schema: StructType): StructType = {
    var outputSchema = super.transformSchema(schema)
    if ($(outputCol).nonEmpty) {
      outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
        $(outputCol), $(scalingVec).size)
    }
    outputSchema
  }

  @Since("3.0.0")
  override def toString: String = {
    s"ElementwiseProduct: uid=$uid" +
      get(scalingVec).map(v => s", vectorSize=${v.size}").getOrElse("")
  }
}

@Since("2.0.0")
object ElementwiseProduct extends DefaultParamsReadable[ElementwiseProduct] {

  @Since("2.0.0")
  override def load(path: String): ElementwiseProduct = super.load(path)
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

spark Imputer 源码

0  赞