spark MinMaxScaler 源码

  • 2022-10-20
  • 浏览 (204)

spark MinMaxScaler 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml.{Estimator, Model}
import org.apache.spark.ml.linalg.{Vector, Vectors, VectorUDT}
import org.apache.spark.ml.param.{DoubleParam, ParamMap, Params}
import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
import org.apache.spark.ml.stat.Summarizer
import org.apache.spark.ml.util._
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructField, StructType}

/**
 * Params for [[MinMaxScaler]] and [[MinMaxScalerModel]].
 */
private[feature] trait MinMaxScalerParams extends Params with HasInputCol with HasOutputCol {

  /**
   * lower bound after transformation, shared by all features
   * Default: 0.0
   * @group param
   */
  val min: DoubleParam = new DoubleParam(this, "min",
    "lower bound of the output feature range")

  /** @group getParam */
  def getMin: Double = $(min)

  /**
   * upper bound after transformation, shared by all features
   * Default: 1.0
   * @group param
   */
  val max: DoubleParam = new DoubleParam(this, "max",
    "upper bound of the output feature range")

  /** @group getParam */
  def getMax: Double = $(max)

  setDefault(min -> 0.0, max -> 1.0)

  /** Validates and transforms the input schema. */
  protected def validateAndTransformSchema(schema: StructType): StructType = {
    require($(min) < $(max), s"The specified min(${$(min)}) is larger or equal to max(${$(max)})")
    SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
    require(!schema.fieldNames.contains($(outputCol)),
      s"Output column ${$(outputCol)} already exists.")
    val outputFields = schema.fields :+ StructField($(outputCol), new VectorUDT, false)
    StructType(outputFields)
  }

}

/**
 * Rescale each feature individually to a common range [min, max] linearly using column summary
 * statistics, which is also known as min-max normalization or Rescaling. The rescaled value for
 * feature E is calculated as:
 *
 * <blockquote>
 *    $$
 *    Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min
 *    $$
 * </blockquote>
 *
 * For the case \(E_{max} == E_{min}\), \(Rescaled(e_i) = 0.5 * (max + min)\).
 *
 * @note Since zero values will probably be transformed to non-zero values, output of the
 * transformer will be DenseVector even for sparse input.
 */
@Since("1.5.0")
class MinMaxScaler @Since("1.5.0") (@Since("1.5.0") override val uid: String)
  extends Estimator[MinMaxScalerModel] with MinMaxScalerParams with DefaultParamsWritable {

  @Since("1.5.0")
  def this() = this(Identifiable.randomUID("minMaxScal"))

  /** @group setParam */
  @Since("1.5.0")
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  @Since("1.5.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  /** @group setParam */
  @Since("1.5.0")
  def setMin(value: Double): this.type = set(min, value)

  /** @group setParam */
  @Since("1.5.0")
  def setMax(value: Double): this.type = set(max, value)

  @Since("2.0.0")
  override def fit(dataset: Dataset[_]): MinMaxScalerModel = {
    transformSchema(dataset.schema, logging = true)

    val Row(max: Vector, min: Vector) = dataset
      .select(Summarizer.metrics("max", "min").summary(col($(inputCol))).as("summary"))
      .select("summary.max", "summary.min")
      .first()

    copyValues(new MinMaxScalerModel(uid, min.compressed, max.compressed).setParent(this))
  }

  @Since("1.5.0")
  override def transformSchema(schema: StructType): StructType = {
    validateAndTransformSchema(schema)
  }

  @Since("1.5.0")
  override def copy(extra: ParamMap): MinMaxScaler = defaultCopy(extra)
}

@Since("1.6.0")
object MinMaxScaler extends DefaultParamsReadable[MinMaxScaler] {

  @Since("1.6.0")
  override def load(path: String): MinMaxScaler = super.load(path)
}

/**
 * Model fitted by [[MinMaxScaler]].
 *
 * @param originalMin min value for each original column during fitting
 * @param originalMax max value for each original column during fitting
 */
@Since("1.5.0")
class MinMaxScalerModel private[ml] (
    @Since("1.5.0") override val uid: String,
    @Since("2.0.0") val originalMin: Vector,
    @Since("2.0.0") val originalMax: Vector)
  extends Model[MinMaxScalerModel] with MinMaxScalerParams with MLWritable {

  import MinMaxScalerModel._

  /** @group setParam */
  @Since("1.5.0")
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  @Since("1.5.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  /** @group setParam */
  @Since("1.5.0")
  def setMin(value: Double): this.type = set(min, value)

  /** @group setParam */
  @Since("1.5.0")
  def setMax(value: Double): this.type = set(max, value)

  @Since("2.0.0")
  override def transform(dataset: Dataset[_]): DataFrame = {
    val outputSchema = transformSchema(dataset.schema, logging = true)

    val numFeatures = originalMax.size
    val scale = $(max) - $(min)
    val minValue = $(min)

    // transformed value for constant cols
    val constantOutput = ($(min) + $(max)) / 2
    val minArray = originalMin.toArray

    val scaleArray = Array.tabulate(numFeatures) { i =>
      val range = originalMax(i) - originalMin(i)
      // scaleArray(i) == 0 iff i-th col is constant (range == 0)
      if (range != 0) scale / range else 0.0
    }

    val transformer = udf { vector: Vector =>
      require(vector.size == numFeatures,
        s"Number of features must be $numFeatures but got ${vector.size}")
      // 0 in sparse vector will probably be rescaled to non-zero
      val values = vector.toArray
      var i = 0
      while (i < numFeatures) {
        if (!values(i).isNaN) {
          if (scaleArray(i) != 0) {
            values(i) = (values(i) - minArray(i)) * scaleArray(i) + minValue
          } else {
            // scaleArray(i) == 0 means i-th col is constant
            values(i) = constantOutput
          }
        }
        i += 1
      }
      Vectors.dense(values).compressed
    }

    dataset.withColumn($(outputCol), transformer(col($(inputCol))),
      outputSchema($(outputCol)).metadata)
  }

  @Since("1.5.0")
  override def transformSchema(schema: StructType): StructType = {
    var outputSchema = validateAndTransformSchema(schema)
    if ($(outputCol).nonEmpty) {
      outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
        $(outputCol), originalMin.size)
    }
    outputSchema
  }

  @Since("1.5.0")
  override def copy(extra: ParamMap): MinMaxScalerModel = {
    val copied = new MinMaxScalerModel(uid, originalMin, originalMax)
    copyValues(copied, extra).setParent(parent)
  }

  @Since("1.6.0")
  override def write: MLWriter = new MinMaxScalerModelWriter(this)

  @Since("3.0.0")
  override def toString: String = {
    s"MinMaxScalerModel: uid=$uid, numFeatures=${originalMin.size}, min=${$(min)}, " +
      s"max=${$(max)}"
  }
}

@Since("1.6.0")
object MinMaxScalerModel extends MLReadable[MinMaxScalerModel] {

  private[MinMaxScalerModel]
  class MinMaxScalerModelWriter(instance: MinMaxScalerModel) extends MLWriter {

    private case class Data(originalMin: Vector, originalMax: Vector)

    override protected def saveImpl(path: String): Unit = {
      DefaultParamsWriter.saveMetadata(instance, path, sc)
      val data = new Data(instance.originalMin, instance.originalMax)
      val dataPath = new Path(path, "data").toString
      sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
    }
  }

  private class MinMaxScalerModelReader extends MLReader[MinMaxScalerModel] {

    private val className = classOf[MinMaxScalerModel].getName

    override def load(path: String): MinMaxScalerModel = {
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
      val dataPath = new Path(path, "data").toString
      val data = sparkSession.read.parquet(dataPath)
      val Row(originalMin: Vector, originalMax: Vector) =
        MLUtils.convertVectorColumnsToML(data, "originalMin", "originalMax")
          .select("originalMin", "originalMax")
          .head()
      val model = new MinMaxScalerModel(metadata.uid, originalMin, originalMax)
      metadata.getAndSetParams(model)
      model
    }
  }

  @Since("1.6.0")
  override def read: MLReader[MinMaxScalerModel] = new MinMaxScalerModelReader

  @Since("1.6.0")
  override def load(path: String): MinMaxScalerModel = super.load(path)
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

0  赞