spark IDF 源码

  • 2022-10-20
  • 浏览 (320)

spark IDF 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml._
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util._
import org.apache.spark.mllib.feature
import org.apache.spark.mllib.linalg.{Vector => OldVector, Vectors => OldVectors}
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StructType
import org.apache.spark.util.VersionUtils.majorVersion

/**
 * Params for [[IDF]] and [[IDFModel]].
 */
private[feature] trait IDFBase extends Params with HasInputCol with HasOutputCol {

  /**
   * The minimum number of documents in which a term should appear.
   * Default: 0
   * @group param
   */
  final val minDocFreq = new IntParam(
    this, "minDocFreq", "minimum number of documents in which a term should appear for filtering" +
      " (>= 0)", ParamValidators.gtEq(0))

  setDefault(minDocFreq -> 0)

  /** @group getParam */
  def getMinDocFreq: Int = $(minDocFreq)

  /**
   * Validate and transform the input schema.
   */
  protected def validateAndTransformSchema(schema: StructType): StructType = {
    SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
    SchemaUtils.appendColumn(schema, $(outputCol), new VectorUDT)
  }
}

/**
 * Compute the Inverse Document Frequency (IDF) given a collection of documents.
 */
@Since("1.4.0")
final class IDF @Since("1.4.0") (@Since("1.4.0") override val uid: String)
  extends Estimator[IDFModel] with IDFBase with DefaultParamsWritable {

  @Since("1.4.0")
  def this() = this(Identifiable.randomUID("idf"))

  /** @group setParam */
  @Since("1.4.0")
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  @Since("1.4.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  /** @group setParam */
  @Since("1.4.0")
  def setMinDocFreq(value: Int): this.type = set(minDocFreq, value)

  @Since("2.0.0")
  override def fit(dataset: Dataset[_]): IDFModel = {
    transformSchema(dataset.schema, logging = true)
    val input: RDD[OldVector] = dataset.select($(inputCol)).rdd.map {
      case Row(v: Vector) => OldVectors.fromML(v)
    }
    val idf = new feature.IDF($(minDocFreq)).fit(input)
    copyValues(new IDFModel(uid, idf).setParent(this))
  }

  @Since("1.4.0")
  override def transformSchema(schema: StructType): StructType = {
    validateAndTransformSchema(schema)
  }

  @Since("1.4.1")
  override def copy(extra: ParamMap): IDF = defaultCopy(extra)
}

@Since("1.6.0")
object IDF extends DefaultParamsReadable[IDF] {

  @Since("1.6.0")
  override def load(path: String): IDF = super.load(path)
}

/**
 * Model fitted by [[IDF]].
 */
@Since("1.4.0")
class IDFModel private[ml] (
    @Since("1.4.0") override val uid: String,
    idfModel: feature.IDFModel)
  extends Model[IDFModel] with IDFBase with MLWritable {

  import IDFModel._

  /** @group setParam */
  @Since("1.4.0")
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  @Since("1.4.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  @Since("2.0.0")
  override def transform(dataset: Dataset[_]): DataFrame = {
    val outputSchema = transformSchema(dataset.schema, logging = true)

    val func = { vector: Vector =>
      vector match {
        case SparseVector(size, indices, values) =>
          val (newIndices, newValues) = feature.IDFModel.transformSparse(idfModel.idf,
            indices, values)
          Vectors.sparse(size, newIndices, newValues)
        case DenseVector(values) =>
          val newValues = feature.IDFModel.transformDense(idfModel.idf, values)
          Vectors.dense(newValues)
        case other =>
          throw new UnsupportedOperationException(
            s"Only sparse and dense vectors are supported but got ${other.getClass}.")
      }
    }

    val transformer = udf(func)
    dataset.withColumn($(outputCol), transformer(col($(inputCol))),
      outputSchema($(outputCol)).metadata)
  }

  @Since("1.4.0")
  override def transformSchema(schema: StructType): StructType = {
    var outputSchema = validateAndTransformSchema(schema)
    if ($(outputCol).nonEmpty) {
      outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
        $(outputCol), idf.size)
    }
    outputSchema
  }

  @Since("1.4.1")
  override def copy(extra: ParamMap): IDFModel = {
    val copied = new IDFModel(uid, idfModel)
    copyValues(copied, extra).setParent(parent)
  }

  /** Returns the IDF vector. */
  @Since("2.0.0")
  def idf: Vector = idfModel.idf.asML

  /** Returns the document frequency */
  @Since("3.0.0")
  def docFreq: Array[Long] = idfModel.docFreq

  /** Returns number of documents evaluated to compute idf */
  @Since("3.0.0")
  def numDocs: Long = idfModel.numDocs

  @Since("1.6.0")
  override def write: MLWriter = new IDFModelWriter(this)

  @Since("3.0.0")
  override def toString: String = {
    s"IDFModel: uid=$uid, numDocs=$numDocs, numFeatures=${idf.size}"
  }
}

@Since("1.6.0")
object IDFModel extends MLReadable[IDFModel] {

  private[IDFModel] class IDFModelWriter(instance: IDFModel) extends MLWriter {

    private case class Data(idf: Vector, docFreq: Array[Long], numDocs: Long)

    override protected def saveImpl(path: String): Unit = {
      DefaultParamsWriter.saveMetadata(instance, path, sc)
      val data = Data(instance.idf, instance.docFreq, instance.numDocs)
      val dataPath = new Path(path, "data").toString
      sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
    }
  }

  private class IDFModelReader extends MLReader[IDFModel] {

    private val className = classOf[IDFModel].getName

    override def load(path: String): IDFModel = {
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
      val dataPath = new Path(path, "data").toString
      val data = sparkSession.read.parquet(dataPath)

      val model = if (majorVersion(metadata.sparkVersion) >= 3) {
        val Row(idf: Vector, df: scala.collection.Seq[_], numDocs: Long) =
          data.select("idf", "docFreq", "numDocs").head()
        new IDFModel(metadata.uid, new feature.IDFModel(OldVectors.fromML(idf),
          df.asInstanceOf[scala.collection.Seq[Long]].toArray, numDocs))
      } else {
        val Row(idf: Vector) = MLUtils.convertVectorColumnsToML(data, "idf")
          .select("idf")
          .head()
        new IDFModel(metadata.uid,
          new feature.IDFModel(OldVectors.fromML(idf), new Array[Long](idf.size), 0L))
      }
      metadata.getAndSetParams(model)
      model
    }
  }

  @Since("1.6.0")
  override def read: MLReader[IDFModel] = new IDFModelReader

  @Since("1.6.0")
  override def load(path: String): IDFModel = super.load(path)
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark Imputer 源码

0  赞