spark MaxAbsScaler 源码

  • 2022-10-20
  • 浏览 (227)

spark MaxAbsScaler 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml.{Estimator, Model}
import org.apache.spark.ml.linalg.{Vector, Vectors, VectorUDT}
import org.apache.spark.ml.param.{ParamMap, Params}
import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
import org.apache.spark.ml.stat.Summarizer
import org.apache.spark.ml.util._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructField, StructType}

/**
 * Params for [[MaxAbsScaler]] and [[MaxAbsScalerModel]].
 */
private[feature] trait MaxAbsScalerParams extends Params with HasInputCol with HasOutputCol {

   /** Validates and transforms the input schema. */
  protected def validateAndTransformSchema(schema: StructType): StructType = {
    SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
    require(!schema.fieldNames.contains($(outputCol)),
      s"Output column ${$(outputCol)} already exists.")
    val outputFields = schema.fields :+ StructField($(outputCol), new VectorUDT, false)
    StructType(outputFields)
  }
}

/**
 * Rescale each feature individually to range [-1, 1] by dividing through the largest maximum
 * absolute value in each feature. It does not shift/center the data, and thus does not destroy
 * any sparsity.
 */
@Since("2.0.0")
class MaxAbsScaler @Since("2.0.0") (@Since("2.0.0") override val uid: String)
  extends Estimator[MaxAbsScalerModel] with MaxAbsScalerParams with DefaultParamsWritable {

  @Since("2.0.0")
  def this() = this(Identifiable.randomUID("maxAbsScal"))

  /** @group setParam */
  @Since("2.0.0")
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  @Since("2.0.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  @Since("2.0.0")
  override def fit(dataset: Dataset[_]): MaxAbsScalerModel = {
    transformSchema(dataset.schema, logging = true)

    val Row(max: Vector, min: Vector) = dataset
      .select(Summarizer.metrics("max", "min").summary(col($(inputCol))).as("summary"))
      .select("summary.max", "summary.min")
      .first()

    val maxAbs = Array.tabulate(max.size) { i => math.max(math.abs(min(i)), math.abs(max(i))) }

    copyValues(new MaxAbsScalerModel(uid, Vectors.dense(maxAbs).compressed).setParent(this))
  }

  @Since("2.0.0")
  override def transformSchema(schema: StructType): StructType = {
    validateAndTransformSchema(schema)
  }

  @Since("2.0.0")
  override def copy(extra: ParamMap): MaxAbsScaler = defaultCopy(extra)
}

@Since("2.0.0")
object MaxAbsScaler extends DefaultParamsReadable[MaxAbsScaler] {

  @Since("2.0.0")
  override def load(path: String): MaxAbsScaler = super.load(path)
}

/**
 * Model fitted by [[MaxAbsScaler]].
 *
 */
@Since("2.0.0")
class MaxAbsScalerModel private[ml] (
    @Since("2.0.0") override val uid: String,
    @Since("2.0.0") val maxAbs: Vector)
  extends Model[MaxAbsScalerModel] with MaxAbsScalerParams with MLWritable {

  import MaxAbsScalerModel._

  /** @group setParam */
  @Since("2.0.0")
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  @Since("2.0.0")
  def setOutputCol(value: String): this.type = set(outputCol, value)

  @Since("2.0.0")
  override def transform(dataset: Dataset[_]): DataFrame = {
    val outputSchema = transformSchema(dataset.schema, logging = true)

    val scale = maxAbs.toArray.map { v => if (v == 0) 1.0 else 1 / v }
    val func = StandardScalerModel.getTransformFunc(
      Array.empty, scale, false, true)
    val transformer = udf(func)

    dataset.withColumn($(outputCol), transformer(col($(inputCol))),
      outputSchema($(outputCol)).metadata)
  }

  @Since("2.0.0")
  override def transformSchema(schema: StructType): StructType = {
    var outputSchema = validateAndTransformSchema(schema)
    if ($(outputCol).nonEmpty) {
      outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
        $(outputCol), maxAbs.size)
    }
    outputSchema
  }

  @Since("2.0.0")
  override def copy(extra: ParamMap): MaxAbsScalerModel = {
    val copied = new MaxAbsScalerModel(uid, maxAbs)
    copyValues(copied, extra).setParent(parent)
  }

  @Since("1.6.0")
  override def write: MLWriter = new MaxAbsScalerModelWriter(this)

  @Since("3.0.0")
  override def toString: String = {
    s"MaxAbsScalerModel: uid=$uid, numFeatures=${maxAbs.size}"
  }
}

@Since("2.0.0")
object MaxAbsScalerModel extends MLReadable[MaxAbsScalerModel] {

  private[MaxAbsScalerModel]
  class MaxAbsScalerModelWriter(instance: MaxAbsScalerModel) extends MLWriter {

    private case class Data(maxAbs: Vector)

    override protected def saveImpl(path: String): Unit = {
      DefaultParamsWriter.saveMetadata(instance, path, sc)
      val data = new Data(instance.maxAbs)
      val dataPath = new Path(path, "data").toString
      sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
    }
  }

  private class MaxAbsScalerModelReader extends MLReader[MaxAbsScalerModel] {

    private val className = classOf[MaxAbsScalerModel].getName

    override def load(path: String): MaxAbsScalerModel = {
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
      val dataPath = new Path(path, "data").toString
      val Row(maxAbs: Vector) = sparkSession.read.parquet(dataPath)
        .select("maxAbs")
        .head()
      val model = new MaxAbsScalerModel(metadata.uid, maxAbs)
      metadata.getAndSetParams(model)
      model
    }
  }

  @Since("2.0.0")
  override def read: MLReader[MaxAbsScalerModel] = new MaxAbsScalerModelReader

  @Since("2.0.0")
  override def load(path: String): MaxAbsScalerModel = super.load(path)
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

0  赞