spark LDAExample 源码

  • 2022-10-20
  • 浏览 (214)

spark LDAExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/LDAExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import java.util.Locale

import org.apache.logging.log4j.Level
import org.apache.logging.log4j.core.config.Configurator
import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel, RegexTokenizer, StopWordsRemover}
import org.apache.spark.ml.linalg.{Vector => MLVector}
import org.apache.spark.mllib.clustering.{DistributedLDAModel, EMLDAOptimizer, LDA, OnlineLDAOptimizer}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Row, SparkSession}

/**
 * An example Latent Dirichlet Allocation (LDA) app. Run with
 * {{{
 * ./bin/run-example mllib.LDAExample [options] <input>
 * }}}
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 */
object LDAExample {

  private case class Params(
      input: Seq[String] = Seq.empty,
      k: Int = 20,
      maxIterations: Int = 10,
      docConcentration: Double = -1,
      topicConcentration: Double = -1,
      vocabSize: Int = 10000,
      stopwordFile: String = "",
      algorithm: String = "em",
      checkpointDir: Option[String] = None,
      checkpointInterval: Int = 10) extends AbstractParams[Params]

  def main(args: Array[String]): Unit = {
    val defaultParams = Params()

    val parser = new OptionParser[Params]("LDAExample") {
      head("LDAExample: an example LDA app for plain text data.")
      opt[Int]("k")
        .text(s"number of topics. default: ${defaultParams.k}")
        .action((x, c) => c.copy(k = x))
      opt[Int]("maxIterations")
        .text(s"number of iterations of learning. default: ${defaultParams.maxIterations}")
        .action((x, c) => c.copy(maxIterations = x))
      opt[Double]("docConcentration")
        .text(s"amount of topic smoothing to use (> 1.0) (-1=auto)." +
        s"  default: ${defaultParams.docConcentration}")
        .action((x, c) => c.copy(docConcentration = x))
      opt[Double]("topicConcentration")
        .text(s"amount of term (word) smoothing to use (> 1.0) (-1=auto)." +
        s"  default: ${defaultParams.topicConcentration}")
        .action((x, c) => c.copy(topicConcentration = x))
      opt[Int]("vocabSize")
        .text(s"number of distinct word types to use, chosen by frequency. (-1=all)" +
          s"  default: ${defaultParams.vocabSize}")
        .action((x, c) => c.copy(vocabSize = x))
      opt[String]("stopwordFile")
        .text(s"filepath for a list of stopwords. Note: This must fit on a single machine." +
        s"  default: ${defaultParams.stopwordFile}")
        .action((x, c) => c.copy(stopwordFile = x))
      opt[String]("algorithm")
        .text(s"inference algorithm to use. em and online are supported." +
        s" default: ${defaultParams.algorithm}")
        .action((x, c) => c.copy(algorithm = x))
      opt[String]("checkpointDir")
        .text(s"Directory for checkpointing intermediate results." +
        s"  Checkpointing helps with recovery and eliminates temporary shuffle files on disk." +
        s"  default: ${defaultParams.checkpointDir}")
        .action((x, c) => c.copy(checkpointDir = Some(x)))
      opt[Int]("checkpointInterval")
        .text(s"Iterations between each checkpoint.  Only used if checkpointDir is set." +
        s" default: ${defaultParams.checkpointInterval}")
        .action((x, c) => c.copy(checkpointInterval = x))
      arg[String]("<input>...")
        .text("input paths (directories) to plain text corpora." +
        "  Each text file line should hold 1 document.")
        .unbounded()
        .required()
        .action((x, c) => c.copy(input = c.input :+ x))
    }

    parser.parse(args, defaultParams) match {
      case Some(params) => run(params)
      case _ => sys.exit(1)
    }
  }

  private def run(params: Params): Unit = {
    val conf = new SparkConf().setAppName(s"LDAExample with $params")
    val sc = new SparkContext(conf)

    Configurator.setRootLevel(Level.WARN)

    // Load documents, and prepare them for LDA.
    val preprocessStart = System.nanoTime()
    val (corpus, vocabArray, actualNumTokens) =
      preprocess(sc, params.input, params.vocabSize, params.stopwordFile)
    corpus.cache()
    val actualCorpusSize = corpus.count()
    val actualVocabSize = vocabArray.length
    val preprocessElapsed = (System.nanoTime() - preprocessStart) / 1e9

    println()
    println(s"Corpus summary:")
    println(s"\t Training set size: $actualCorpusSize documents")
    println(s"\t Vocabulary size: $actualVocabSize terms")
    println(s"\t Training set size: $actualNumTokens tokens")
    println(s"\t Preprocessing time: $preprocessElapsed sec")
    println()

    // Run LDA.
    val lda = new LDA()

    val optimizer = params.algorithm.toLowerCase(Locale.ROOT) match {
      case "em" => new EMLDAOptimizer
      // add (1.0 / actualCorpusSize) to MiniBatchFraction be more robust on tiny datasets.
      case "online" => new OnlineLDAOptimizer().setMiniBatchFraction(0.05 + 1.0 / actualCorpusSize)
      case _ => throw new IllegalArgumentException(
        s"Only em, online are supported but got ${params.algorithm}.")
    }

    lda.setOptimizer(optimizer)
      .setK(params.k)
      .setMaxIterations(params.maxIterations)
      .setDocConcentration(params.docConcentration)
      .setTopicConcentration(params.topicConcentration)
      .setCheckpointInterval(params.checkpointInterval)
    if (params.checkpointDir.nonEmpty) {
      sc.setCheckpointDir(params.checkpointDir.get)
    }
    val startTime = System.nanoTime()
    val ldaModel = lda.run(corpus)
    val elapsed = (System.nanoTime() - startTime) / 1e9

    println(s"Finished training LDA model.  Summary:")
    println(s"\t Training time: $elapsed sec")

    ldaModel match {
      case distLDAModel: DistributedLDAModel =>
        val avgLogLikelihood = distLDAModel.logLikelihood / actualCorpusSize.toDouble
        println(s"\t Training data average log likelihood: $avgLogLikelihood")
        println()
      case _ => // do nothing
    }

    // Print the topics, showing the top-weighted terms for each topic.
    val topicIndices = ldaModel.describeTopics(maxTermsPerTopic = 10)
    val topics = topicIndices.map { case (terms, termWeights) =>
      terms.zip(termWeights).map { case (term, weight) => (vocabArray(term), weight) }
    }
    println(s"${params.k} topics:")
    topics.zipWithIndex.foreach { case (topic, i) =>
      println(s"TOPIC $i")
      topic.foreach { case (term, weight) =>
        println(s"$term\t$weight")
      }
      println()
    }
    sc.stop()
  }

  /**
   * Load documents, tokenize them, create vocabulary, and prepare documents as term count vectors.
   * @return (corpus, vocabulary as array, total token count in corpus)
   */
  private def preprocess(
      sc: SparkContext,
      paths: Seq[String],
      vocabSize: Int,
      stopwordFile: String): (RDD[(Long, Vector)], Array[String], Long) = {

    val spark = SparkSession
      .builder
      .sparkContext(sc)
      .getOrCreate()
    import spark.implicits._

    // Get dataset of document texts
    // One document per line in each text file. If the input consists of many small files,
    // this can result in a large number of small partitions, which can degrade performance.
    // In this case, consider using coalesce() to create fewer, larger partitions.
    val df = sc.textFile(paths.mkString(",")).toDF("docs")
    val customizedStopWords: Array[String] = if (stopwordFile.isEmpty) {
      Array.empty[String]
    } else {
      val stopWordText = sc.textFile(stopwordFile).collect()
      stopWordText.flatMap(_.stripMargin.split("\\s+"))
    }
    val tokenizer = new RegexTokenizer()
      .setInputCol("docs")
      .setOutputCol("rawTokens")
    val stopWordsRemover = new StopWordsRemover()
      .setInputCol("rawTokens")
      .setOutputCol("tokens")
    stopWordsRemover.setStopWords(stopWordsRemover.getStopWords ++ customizedStopWords)
    val countVectorizer = new CountVectorizer()
      .setVocabSize(vocabSize)
      .setInputCol("tokens")
      .setOutputCol("features")

    val pipeline = new Pipeline()
      .setStages(Array(tokenizer, stopWordsRemover, countVectorizer))

    val model = pipeline.fit(df)
    val documents = model.transform(df)
      .select("features")
      .rdd
      .map { case Row(features: MLVector) => Vectors.fromML(features) }
      .zipWithIndex()
      .map(_.swap)

    (documents,
      model.stages(2).asInstanceOf[CountVectorizerModel].vocabulary,  // vocabulary
      documents.map(_._2.numActives).sum().toLong) // total token count
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞