spark BinaryClassificationMetricsExample 源码

  • 2022-10-20
  • 浏览 (269)

spark BinaryClassificationMetricsExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/BinaryClassificationMetricsExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
// $example off$

object BinaryClassificationMetricsExample {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("BinaryClassificationMetricsExample")
    val sc = new SparkContext(conf)
    // $example on$
    // Load training data in LIBSVM format
    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_binary_classification_data.txt")

    // Split data into training (60%) and test (40%)
    val Array(training, test) = data.randomSplit(Array(0.6, 0.4), seed = 11L)
    training.cache()

    // Run training algorithm to build the model
    val model = new LogisticRegressionWithLBFGS()
      .setNumClasses(2)
      .run(training)

    // Clear the prediction threshold so the model will return probabilities
    model.clearThreshold

    // Compute raw scores on the test set
    val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
      val prediction = model.predict(features)
      (prediction, label)
    }

    // Instantiate metrics object
    val metrics = new BinaryClassificationMetrics(predictionAndLabels)

    // Precision by threshold
    val precision = metrics.precisionByThreshold
    precision.collect.foreach { case (t, p) =>
      println(s"Threshold: $t, Precision: $p")
    }

    // Recall by threshold
    val recall = metrics.recallByThreshold
    recall.collect.foreach { case (t, r) =>
      println(s"Threshold: $t, Recall: $r")
    }

    // Precision-Recall Curve
    val PRC = metrics.pr

    // F-measure
    val f1Score = metrics.fMeasureByThreshold
    f1Score.collect.foreach { case (t, f) =>
      println(s"Threshold: $t, F-score: $f, Beta = 1")
    }

    val beta = 0.5
    val fScore = metrics.fMeasureByThreshold(beta)
    fScore.collect.foreach { case (t, f) =>
      println(s"Threshold: $t, F-score: $f, Beta = 0.5")
    }

    // AUPRC
    val auPRC = metrics.areaUnderPR
    println(s"Area under precision-recall curve = $auPRC")

    // Compute thresholds used in ROC and PR curves
    val thresholds = precision.map(_._1)

    // ROC Curve
    val roc = metrics.roc

    // AUROC
    val auROC = metrics.areaUnderROC
    println(s"Area under ROC = $auROC")
    // $example off$
    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

spark DecisionTreeRegressionExample 源码

0  赞