spark DecisionTreeClassificationExample 源码

  • 2022-10-20
  • 浏览 (227)

spark DecisionTreeClassificationExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.tree.model.DecisionTreeModel
import org.apache.spark.mllib.util.MLUtils
// $example off$

object DecisionTreeClassificationExample {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("DecisionTreeClassificationExample")
    val sc = new SparkContext(conf)

    // $example on$
    // Load and parse the data file.
    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
    // Split the data into training and test sets (30% held out for testing)
    val splits = data.randomSplit(Array(0.7, 0.3))
    val (trainingData, testData) = (splits(0), splits(1))

    // Train a DecisionTree model.
    //  Empty categoricalFeaturesInfo indicates all features are continuous.
    val numClasses = 2
    val categoricalFeaturesInfo = Map[Int, Int]()
    val impurity = "gini"
    val maxDepth = 5
    val maxBins = 32

    val model = DecisionTree.trainClassifier(trainingData, numClasses, categoricalFeaturesInfo,
      impurity, maxDepth, maxBins)

    // Evaluate model on test instances and compute test error
    val labelAndPreds = testData.map { point =>
      val prediction = model.predict(point.features)
      (point.label, prediction)
    }
    val testErr = labelAndPreds.filter(r => r._1 != r._2).count().toDouble / testData.count()
    println(s"Test Error = $testErr")
    println(s"Learned classification tree model:\n ${model.toDebugString}")

    // Save and load model
    model.save(sc, "target/tmp/myDecisionTreeClassificationModel")
    val sameModel = DecisionTreeModel.load(sc, "target/tmp/myDecisionTreeClassificationModel")
    // $example off$

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeRegressionExample 源码

0  赞