spark ChiSqSelectorExample 源码

  • 2022-10-20
  • 浏览 (245)

spark ChiSqSelectorExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/ChiSqSelectorExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
// $example on$
import org.apache.spark.mllib.feature.ChiSqSelector
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
// $example off$

object ChiSqSelectorExample {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("ChiSqSelectorExample")
    val sc = new SparkContext(conf)

    // $example on$
    // Load some data in libsvm format
    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
    // Discretize data in 16 equal bins since ChiSqSelector requires categorical features
    // Even though features are doubles, the ChiSqSelector treats each unique value as a category
    val discretizedData = data.map { lp =>
      LabeledPoint(lp.label, Vectors.dense(lp.features.toArray.map { x => (x / 16).floor }))
    }
    // Create ChiSqSelector that will select top 50 of 692 features
    val selector = new ChiSqSelector(50)
    // Create ChiSqSelector model (selecting features)
    val transformer = selector.fit(discretizedData)
    // Filter the top 50 features from each feature vector
    val filteredData = discretizedData.map { lp =>
      LabeledPoint(lp.label, transformer.transform(lp.features))
    }
    // $example off$

    println("filtered data: ")
    filteredData.collect.foreach(x => println(x))

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

spark DecisionTreeRegressionExample 源码

0  赞