spark LBFGSExample 源码

  • 2022-10-20
  • 浏览 (355)

spark LBFGSExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/LBFGSExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.classification.LogisticRegressionModel
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.optimization.{LBFGS, LogisticGradient, SquaredL2Updater}
import org.apache.spark.mllib.util.MLUtils
// $example off$

object LBFGSExample {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("LBFGSExample")
    val sc = new SparkContext(conf)

    // $example on$
    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
    val numFeatures = data.take(1)(0).features.size

    // Split data into training (60%) and test (40%).
    val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)

    // Append 1 into the training data as intercept.
    val training = splits(0).map(x => (x.label, MLUtils.appendBias(x.features))).cache()

    val test = splits(1)

    // Run training algorithm to build the model
    val numCorrections = 10
    val convergenceTol = 1e-4
    val maxNumIterations = 20
    val regParam = 0.1
    val initialWeightsWithIntercept = Vectors.dense(new Array[Double](numFeatures + 1))

    val (weightsWithIntercept, loss) = LBFGS.runLBFGS(
      training,
      new LogisticGradient(),
      new SquaredL2Updater(),
      numCorrections,
      convergenceTol,
      maxNumIterations,
      regParam,
      initialWeightsWithIntercept)

    val model = new LogisticRegressionModel(
      Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)),
      weightsWithIntercept(weightsWithIntercept.size - 1))

    // Clear the default threshold.
    model.clearThreshold()

    // Compute raw scores on the test set.
    val scoreAndLabels = test.map { point =>
      val score = model.predict(point.features)
      (score, point.label)
    }

    // Get evaluation metrics.
    val metrics = new BinaryClassificationMetrics(scoreAndLabels)
    val auROC = metrics.areaUnderROC()

    println("Loss of each step in training process")
    loss.foreach(println)
    println(s"Area under ROC = $auROC")
    // $example off$

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞