spark MultilayerPerceptronClassifierWrapper 源码

  • 2022-10-20
  • 浏览 (192)

spark MultilayerPerceptronClassifierWrapper 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/MultilayerPerceptronClassifierWrapper.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.r

import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.classification.{MultilayerPerceptronClassificationModel, MultilayerPerceptronClassifier}
import org.apache.spark.ml.feature.{IndexToString, RFormula}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.r.RWrapperUtils._
import org.apache.spark.ml.util.{MLReadable, MLReader, MLWritable, MLWriter}
import org.apache.spark.sql.{DataFrame, Dataset}

private[r] class MultilayerPerceptronClassifierWrapper private (
    val pipeline: PipelineModel
  ) extends MLWritable {

  import MultilayerPerceptronClassifierWrapper._

  private val mlpModel: MultilayerPerceptronClassificationModel =
    pipeline.stages(1).asInstanceOf[MultilayerPerceptronClassificationModel]

  lazy val weights: Array[Double] = mlpModel.weights.toArray
  lazy val layers: Array[Int] = mlpModel.getLayers

  def transform(dataset: Dataset[_]): DataFrame = {
    pipeline.transform(dataset)
      .drop(mlpModel.getFeaturesCol)
      .drop(mlpModel.getLabelCol)
      .drop(PREDICTED_LABEL_INDEX_COL)
  }

  /**
   * Returns an [[MLWriter]] instance for this ML instance.
   */
  override def write: MLWriter =
    new MultilayerPerceptronClassifierWrapper.MultilayerPerceptronClassifierWrapperWriter(this)
}

private[r] object MultilayerPerceptronClassifierWrapper
  extends MLReadable[MultilayerPerceptronClassifierWrapper] {

  val PREDICTED_LABEL_INDEX_COL = "pred_label_idx"
  val PREDICTED_LABEL_COL = "prediction"

  def fit(  // scalastyle:ignore
      data: DataFrame,
      formula: String,
      blockSize: Int,
      layers: Array[Int],
      solver: String,
      maxIter: Int,
      tol: Double,
      stepSize: Double,
      seed: String,
      initialWeights: Array[Double],
      handleInvalid: String
     ): MultilayerPerceptronClassifierWrapper = {
    val rFormula = new RFormula()
      .setFormula(formula)
      .setForceIndexLabel(true)
      .setHandleInvalid(handleInvalid)
    checkDataColumns(rFormula, data)
    val rFormulaModel = rFormula.fit(data)
    // get labels and feature names from output schema
    val (_, labels) = getFeaturesAndLabels(rFormulaModel, data)

    // assemble and fit the pipeline
    val mlp = new MultilayerPerceptronClassifier()
      .setLayers(layers)
      .setBlockSize(blockSize)
      .setSolver(solver)
      .setMaxIter(maxIter)
      .setTol(tol)
      .setStepSize(stepSize)
      .setFeaturesCol(rFormula.getFeaturesCol)
      .setLabelCol(rFormula.getLabelCol)
      .setPredictionCol(PREDICTED_LABEL_INDEX_COL)
    if (seed != null && seed.length > 0) mlp.setSeed(seed.toInt)
    if (initialWeights != null) {
      require(initialWeights.length > 0)
      mlp.setInitialWeights(Vectors.dense(initialWeights))
    }

    val idxToStr = new IndexToString()
      .setInputCol(PREDICTED_LABEL_INDEX_COL)
      .setOutputCol(PREDICTED_LABEL_COL)
      .setLabels(labels)

    val pipeline = new Pipeline()
      .setStages(Array(rFormulaModel, mlp, idxToStr))
      .fit(data)

    new MultilayerPerceptronClassifierWrapper(pipeline)
  }

  /**
   * Returns an [[MLReader]] instance for this class.
   */
  override def read: MLReader[MultilayerPerceptronClassifierWrapper] =
    new MultilayerPerceptronClassifierWrapperReader

  override def load(path: String): MultilayerPerceptronClassifierWrapper = super.load(path)

  class MultilayerPerceptronClassifierWrapperReader
    extends MLReader[MultilayerPerceptronClassifierWrapper]{

    override def load(path: String): MultilayerPerceptronClassifierWrapper = {
      implicit val format = DefaultFormats
      val pipelinePath = new Path(path, "pipeline").toString

      val pipeline = PipelineModel.load(pipelinePath)
      new MultilayerPerceptronClassifierWrapper(pipeline)
    }
  }

  class MultilayerPerceptronClassifierWrapperWriter(instance: MultilayerPerceptronClassifierWrapper)
    extends MLWriter {

    override protected def saveImpl(path: String): Unit = {
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadata = "class" -> instance.getClass.getName
      val rMetadataJson: String = compact(render(rMetadata))
      sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)

      instance.pipeline.save(pipelinePath)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionWrapper 源码

spark ALSWrapper 源码

spark BisectingKMeansWrapper 源码

spark DecisionTreeClassifierWrapper 源码

spark DecisionTreeRegressorWrapper 源码

spark FMClassifierWrapper 源码

spark FMRegressorWrapper 源码

spark FPGrowthWrapper 源码

spark GBTClassifierWrapper 源码

spark GBTRegressorWrapper 源码

0  赞