spark MultilayerPerceptronClassifierWrapper 源码
spark MultilayerPerceptronClassifierWrapper 代码
文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/MultilayerPerceptronClassifierWrapper.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.r
import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.classification.{MultilayerPerceptronClassificationModel, MultilayerPerceptronClassifier}
import org.apache.spark.ml.feature.{IndexToString, RFormula}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.r.RWrapperUtils._
import org.apache.spark.ml.util.{MLReadable, MLReader, MLWritable, MLWriter}
import org.apache.spark.sql.{DataFrame, Dataset}
private[r] class MultilayerPerceptronClassifierWrapper private (
val pipeline: PipelineModel
) extends MLWritable {
import MultilayerPerceptronClassifierWrapper._
private val mlpModel: MultilayerPerceptronClassificationModel =
pipeline.stages(1).asInstanceOf[MultilayerPerceptronClassificationModel]
lazy val weights: Array[Double] = mlpModel.weights.toArray
lazy val layers: Array[Int] = mlpModel.getLayers
def transform(dataset: Dataset[_]): DataFrame = {
pipeline.transform(dataset)
.drop(mlpModel.getFeaturesCol)
.drop(mlpModel.getLabelCol)
.drop(PREDICTED_LABEL_INDEX_COL)
}
/**
* Returns an [[MLWriter]] instance for this ML instance.
*/
override def write: MLWriter =
new MultilayerPerceptronClassifierWrapper.MultilayerPerceptronClassifierWrapperWriter(this)
}
private[r] object MultilayerPerceptronClassifierWrapper
extends MLReadable[MultilayerPerceptronClassifierWrapper] {
val PREDICTED_LABEL_INDEX_COL = "pred_label_idx"
val PREDICTED_LABEL_COL = "prediction"
def fit( // scalastyle:ignore
data: DataFrame,
formula: String,
blockSize: Int,
layers: Array[Int],
solver: String,
maxIter: Int,
tol: Double,
stepSize: Double,
seed: String,
initialWeights: Array[Double],
handleInvalid: String
): MultilayerPerceptronClassifierWrapper = {
val rFormula = new RFormula()
.setFormula(formula)
.setForceIndexLabel(true)
.setHandleInvalid(handleInvalid)
checkDataColumns(rFormula, data)
val rFormulaModel = rFormula.fit(data)
// get labels and feature names from output schema
val (_, labels) = getFeaturesAndLabels(rFormulaModel, data)
// assemble and fit the pipeline
val mlp = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(blockSize)
.setSolver(solver)
.setMaxIter(maxIter)
.setTol(tol)
.setStepSize(stepSize)
.setFeaturesCol(rFormula.getFeaturesCol)
.setLabelCol(rFormula.getLabelCol)
.setPredictionCol(PREDICTED_LABEL_INDEX_COL)
if (seed != null && seed.length > 0) mlp.setSeed(seed.toInt)
if (initialWeights != null) {
require(initialWeights.length > 0)
mlp.setInitialWeights(Vectors.dense(initialWeights))
}
val idxToStr = new IndexToString()
.setInputCol(PREDICTED_LABEL_INDEX_COL)
.setOutputCol(PREDICTED_LABEL_COL)
.setLabels(labels)
val pipeline = new Pipeline()
.setStages(Array(rFormulaModel, mlp, idxToStr))
.fit(data)
new MultilayerPerceptronClassifierWrapper(pipeline)
}
/**
* Returns an [[MLReader]] instance for this class.
*/
override def read: MLReader[MultilayerPerceptronClassifierWrapper] =
new MultilayerPerceptronClassifierWrapperReader
override def load(path: String): MultilayerPerceptronClassifierWrapper = super.load(path)
class MultilayerPerceptronClassifierWrapperReader
extends MLReader[MultilayerPerceptronClassifierWrapper]{
override def load(path: String): MultilayerPerceptronClassifierWrapper = {
implicit val format = DefaultFormats
val pipelinePath = new Path(path, "pipeline").toString
val pipeline = PipelineModel.load(pipelinePath)
new MultilayerPerceptronClassifierWrapper(pipeline)
}
}
class MultilayerPerceptronClassifierWrapperWriter(instance: MultilayerPerceptronClassifierWrapper)
extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadata = "class" -> instance.getClass.getName
val rMetadataJson: String = compact(render(rMetadata))
sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
instance.pipeline.save(pipelinePath)
}
}
}
相关信息
相关文章
spark AFTSurvivalRegressionWrapper 源码
spark BisectingKMeansWrapper 源码
spark DecisionTreeClassifierWrapper 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦