spark NGram 源码

  • 2022-10-20
  • 浏览 (210)

spark NGram 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/NGram.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import org.apache.spark.annotation.Since
import org.apache.spark.ml.UnaryTransformer
import org.apache.spark.ml.param._
import org.apache.spark.ml.util._
import org.apache.spark.sql.types.{ArrayType, DataType, StringType}

/**
 * A feature transformer that converts the input array of strings into an array of n-grams. Null
 * values in the input array are ignored.
 * It returns an array of n-grams where each n-gram is represented by a space-separated string of
 * words.
 *
 * When the input is empty, an empty array is returned.
 * When the input array length is less than n (number of elements per n-gram), no n-grams are
 * returned.
 */
@Since("1.5.0")
class NGram @Since("1.5.0") (@Since("1.5.0") override val uid: String)
  extends UnaryTransformer[Seq[String], Seq[String], NGram] with DefaultParamsWritable {

  @Since("1.5.0")
  def this() = this(Identifiable.randomUID("ngram"))

  /**
   * Minimum n-gram length, greater than or equal to 1.
   * Default: 2, bigram features
   * @group param
   */
  @Since("1.5.0")
  val n: IntParam = new IntParam(this, "n", "number elements per n-gram (>=1)",
    ParamValidators.gtEq(1))

  /** @group setParam */
  @Since("1.5.0")
  def setN(value: Int): this.type = set(n, value)

  /** @group getParam */
  @Since("1.5.0")
  def getN: Int = $(n)

  setDefault(n -> 2)

  override protected def createTransformFunc: Seq[String] => Seq[String] = {
    _.iterator.sliding($(n)).withPartial(false).map(_.mkString(" ")).toSeq
  }

  override protected def validateInputType(inputType: DataType): Unit = {
    require(inputType.sameType(ArrayType(StringType)),
      s"Input type must be ${ArrayType(StringType).catalogString} but got " +
        inputType.catalogString)
  }

  override protected def outputDataType: DataType = new ArrayType(StringType, false)

  @Since("3.0.0")
  override def toString: String = {
    s"NGram: uid=$uid, n=${$(n)}"
  }
}

@Since("1.6.0")
object NGram extends DefaultParamsReadable[NGram] {

  @Since("1.6.0")
  override def load(path: String): NGram = super.load(path)
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

0  赞