spark KMeansWrapper 源码

  • 2022-10-20
  • 浏览 (221)

spark KMeansWrapper 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/r/KMeansWrapper.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.r

import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.clustering.{KMeans, KMeansModel}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}

private[r] class KMeansWrapper private (
    val pipeline: PipelineModel,
    val features: Array[String],
    val size: Array[Long],
    val isLoaded: Boolean = false) extends MLWritable {

  private val kMeansModel: KMeansModel = pipeline.stages(1).asInstanceOf[KMeansModel]

  lazy val coefficients: Array[Double] = kMeansModel.clusterCenters.flatMap(_.toArray)

  lazy val k: Int = kMeansModel.getK

  lazy val cluster: DataFrame = kMeansModel.summary.cluster

  lazy val clusterSize: Int = kMeansModel.clusterCenters.size

  def fitted(method: String): DataFrame = {
    if (method == "centers") {
      kMeansModel.summary.predictions.drop(kMeansModel.getFeaturesCol)
    } else if (method == "classes") {
      kMeansModel.summary.cluster
    } else {
      throw new UnsupportedOperationException(
        s"Method (centers or classes) required but $method found.")
    }
  }

  def transform(dataset: Dataset[_]): DataFrame = {
    pipeline.transform(dataset).drop(kMeansModel.getFeaturesCol)
  }

  override def write: MLWriter = new KMeansWrapper.KMeansWrapperWriter(this)
}

private[r] object KMeansWrapper extends MLReadable[KMeansWrapper] {

  def fit(
      data: DataFrame,
      formula: String,
      k: Int,
      maxIter: Int,
      initMode: String,
      seed: String,
      initSteps: Int,
      tol: Double): KMeansWrapper = {

    val rFormula = new RFormula()
      .setFormula(formula)
      .setFeaturesCol("features")
    RWrapperUtils.checkDataColumns(rFormula, data)
    val rFormulaModel = rFormula.fit(data)

    // get feature names from output schema
    val schema = rFormulaModel.transform(data).schema
    val featureAttrs = AttributeGroup.fromStructField(schema(rFormulaModel.getFeaturesCol))
      .attributes.get
    val features = featureAttrs.map(_.name.get)

    val kMeans = new KMeans()
      .setK(k)
      .setMaxIter(maxIter)
      .setInitMode(initMode)
      .setFeaturesCol(rFormula.getFeaturesCol)
      .setInitSteps(initSteps)
      .setTol(tol)

    if (seed != null && seed.length > 0) kMeans.setSeed(seed.toInt)

    val pipeline = new Pipeline()
      .setStages(Array(rFormulaModel, kMeans))
      .fit(data)

    val kMeansModel: KMeansModel = pipeline.stages(1).asInstanceOf[KMeansModel]
    val size: Array[Long] = kMeansModel.summary.clusterSizes

    new KMeansWrapper(pipeline, features, size)
  }

  override def read: MLReader[KMeansWrapper] = new KMeansWrapperReader

  override def load(path: String): KMeansWrapper = super.load(path)

  class KMeansWrapperWriter(instance: KMeansWrapper) extends MLWriter {

    override protected def saveImpl(path: String): Unit = {
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString

      val rMetadata = ("class" -> instance.getClass.getName) ~
        ("features" -> instance.features.toSeq) ~
        ("size" -> instance.size.toSeq)
      val rMetadataJson: String = compact(render(rMetadata))

      sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
      instance.pipeline.save(pipelinePath)
    }
  }

  class KMeansWrapperReader extends MLReader[KMeansWrapper] {

    override def load(path: String): KMeansWrapper = {
      implicit val format = DefaultFormats
      val rMetadataPath = new Path(path, "rMetadata").toString
      val pipelinePath = new Path(path, "pipeline").toString
      val pipeline = PipelineModel.load(pipelinePath)

      val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
      val rMetadata = parse(rMetadataStr)
      val features = (rMetadata \ "features").extract[Array[String]]
      val size = (rMetadata \ "size").extract[Array[Long]]
      new KMeansWrapper(pipeline, features, size, isLoaded = true)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionWrapper 源码

spark ALSWrapper 源码

spark BisectingKMeansWrapper 源码

spark DecisionTreeClassifierWrapper 源码

spark DecisionTreeRegressorWrapper 源码

spark FMClassifierWrapper 源码

spark FMRegressorWrapper 源码

spark FPGrowthWrapper 源码

spark GBTClassifierWrapper 源码

spark GBTRegressorWrapper 源码

0  赞