spark RankingMetricsExample 源码

  • 2022-10-20
  • 浏览 (208)

spark RankingMetricsExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/RankingMetricsExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

// $example on$
import org.apache.spark.mllib.evaluation.{RankingMetrics, RegressionMetrics}
import org.apache.spark.mllib.recommendation.{ALS, Rating}
// $example off$
import org.apache.spark.sql.SparkSession

object RankingMetricsExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("RankingMetricsExample")
      .getOrCreate()
    // $example on$
    // Read in the ratings data
    val ratings = spark.read.textFile("data/mllib/sample_movielens_data.txt").rdd.map { line =>
      val fields = line.split("::")
      Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble - 2.5)
    }.cache()

    // Map ratings to 1 or 0, 1 indicating a movie that should be recommended
    val binarizedRatings = ratings.map(r => Rating(r.user, r.product,
      if (r.rating > 0) 1.0 else 0.0)).cache()

    // Summarize ratings
    val numRatings = ratings.count()
    val numUsers = ratings.map(_.user).distinct().count()
    val numMovies = ratings.map(_.product).distinct().count()
    println(s"Got $numRatings ratings from $numUsers users on $numMovies movies.")

    // Build the model
    val numIterations = 10
    val rank = 10
    val lambda = 0.01
    val model = ALS.train(ratings, rank, numIterations, lambda)

    // Define a function to scale ratings from 0 to 1
    def scaledRating(r: Rating): Rating = {
      val scaledRating = math.max(math.min(r.rating, 1.0), 0.0)
      Rating(r.user, r.product, scaledRating)
    }

    // Get sorted top ten predictions for each user and then scale from [0, 1]
    val userRecommended = model.recommendProductsForUsers(10).map { case (user, recs) =>
      (user, recs.map(scaledRating))
    }

    // Assume that any movie a user rated 3 or higher (which maps to a 1) is a relevant document
    // Compare with top ten most relevant documents
    val userMovies = binarizedRatings.groupBy(_.user)
    val relevantDocuments = userMovies.join(userRecommended).map { case (user, (actual,
    predictions)) =>
      (predictions.map(_.product), actual.filter(_.rating > 0.0).map(_.product).toArray)
    }

    // Instantiate metrics object
    val metrics = new RankingMetrics(relevantDocuments)

    // Precision at K
    Array(1, 3, 5).foreach { k =>
      println(s"Precision at $k = ${metrics.precisionAt(k)}")
    }

    // Mean average precision
    println(s"Mean average precision = ${metrics.meanAveragePrecision}")

    // Mean average precision at k
    println(s"Mean average precision at 2 = ${metrics.meanAveragePrecisionAt(2)}")

    // Normalized discounted cumulative gain
    Array(1, 3, 5).foreach { k =>
      println(s"NDCG at $k = ${metrics.ndcgAt(k)}")
    }

    // Recall at K
    Array(1, 3, 5).foreach { k =>
      println(s"Recall at $k = ${metrics.recallAt(k)}")
    }

    // Get predictions for each data point
    val allPredictions = model.predict(ratings.map(r => (r.user, r.product))).map(r => ((r.user,
      r.product), r.rating))
    val allRatings = ratings.map(r => ((r.user, r.product), r.rating))
    val predictionsAndLabels = allPredictions.join(allRatings).map { case ((user, product),
    (predicted, actual)) =>
      (predicted, actual)
    }

    // Get the RMSE using regression metrics
    val regressionMetrics = new RegressionMetrics(predictionsAndLabels)
    println(s"RMSE = ${regressionMetrics.rootMeanSquaredError}")

    // R-squared
    println(s"R-squared = ${regressionMetrics.r2}")
    // $example off$
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞