spark V2Aggregator 源码
spark V2Aggregator 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/V2Aggregator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.expressions.aggregate
import java.io.{ByteArrayInputStream, ByteArrayOutputStream, ObjectInputStream, ObjectOutputStream}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Expression, ImplicitCastInputTypes, UnsafeProjection}
import org.apache.spark.sql.connector.catalog.functions.{AggregateFunction => V2AggregateFunction}
import org.apache.spark.sql.types.{AbstractDataType, DataType}
case class V2Aggregator[BUF <: java.io.Serializable, OUT](
aggrFunc: V2AggregateFunction[BUF, OUT],
children: Seq[Expression],
mutableAggBufferOffset: Int = 0,
inputAggBufferOffset: Int = 0)
extends TypedImperativeAggregate[BUF] with ImplicitCastInputTypes {
private[this] lazy val inputProjection = UnsafeProjection.create(children)
override def nullable: Boolean = aggrFunc.isResultNullable
override def dataType: DataType = aggrFunc.resultType()
override def inputTypes: Seq[AbstractDataType] = aggrFunc.inputTypes().toSeq
override def createAggregationBuffer(): BUF = aggrFunc.newAggregationState()
override def update(buffer: BUF, input: InternalRow): BUF = {
aggrFunc.update(buffer, inputProjection(input))
}
override def merge(buffer: BUF, input: BUF): BUF = aggrFunc.merge(buffer, input)
override def eval(buffer: BUF): Any = {
aggrFunc.produceResult(buffer)
}
override def serialize(buffer: BUF): Array[Byte] = {
val bos = new ByteArrayOutputStream()
val out = new ObjectOutputStream(bos)
out.writeObject(buffer)
out.close()
bos.toByteArray
}
override def deserialize(bytes: Array[Byte]): BUF = {
val in = new ObjectInputStream(new ByteArrayInputStream(bytes))
in.readObject().asInstanceOf[BUF]
}
def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): V2Aggregator[BUF, OUT] =
copy(mutableAggBufferOffset = newMutableAggBufferOffset)
def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): V2Aggregator[BUF, OUT] =
copy(inputAggBufferOffset = newInputAggBufferOffset)
override protected def withNewChildrenInternal(newChildren: IndexedSeq[Expression]): Expression =
copy(children = newChildren)
}
相关信息
相关文章
spark ApproxCountDistinctForIntervals 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦