spark JavaHypothesisTestingExample 源码

  • 2022-10-20
  • 浏览 (210)

spark JavaHypothesisTestingExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/mllib/JavaHypothesisTestingExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.mllib;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;

// $example on$
import java.util.Arrays;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.linalg.Matrices;
import org.apache.spark.mllib.linalg.Matrix;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.stat.Statistics;
import org.apache.spark.mllib.stat.test.ChiSqTestResult;
// $example off$

public class JavaHypothesisTestingExample {
  public static void main(String[] args) {

    SparkConf conf = new SparkConf().setAppName("JavaHypothesisTestingExample");
    JavaSparkContext jsc = new JavaSparkContext(conf);

    // $example on$
    // a vector composed of the frequencies of events
    Vector vec = Vectors.dense(0.1, 0.15, 0.2, 0.3, 0.25);

    // compute the goodness of fit. If a second vector to test against is not supplied
    // as a parameter, the test runs against a uniform distribution.
    ChiSqTestResult goodnessOfFitTestResult = Statistics.chiSqTest(vec);
    // summary of the test including the p-value, degrees of freedom, test statistic,
    // the method used, and the null hypothesis.
    System.out.println(goodnessOfFitTestResult + "\n");

    // Create a contingency matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
    Matrix mat = Matrices.dense(3, 2, new double[]{1.0, 3.0, 5.0, 2.0, 4.0, 6.0});

    // conduct Pearson's independence test on the input contingency matrix
    ChiSqTestResult independenceTestResult = Statistics.chiSqTest(mat);
    // summary of the test including the p-value, degrees of freedom...
    System.out.println(independenceTestResult + "\n");

    // an RDD of labeled points
    JavaRDD<LabeledPoint> obs = jsc.parallelize(
      Arrays.asList(
        new LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0)),
        new LabeledPoint(1.0, Vectors.dense(1.0, 2.0, 0.0)),
        new LabeledPoint(-1.0, Vectors.dense(-1.0, 0.0, -0.5))
      )
    );

    // The contingency table is constructed from the raw (label, feature) pairs and used to conduct
    // the independence test. Returns an array containing the ChiSquaredTestResult for every feature
    // against the label.
    ChiSqTestResult[] featureTestResults = Statistics.chiSqTest(obs.rdd());
    int i = 1;
    for (ChiSqTestResult result : featureTestResults) {
      System.out.println("Column " + i + ":");
      System.out.println(result + "\n");  // summary of the test
      i++;
    }
    // $example off$

    jsc.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaALS 源码

spark JavaAssociationRulesExample 源码

spark JavaBinaryClassificationMetricsExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaCorrelationsExample 源码

spark JavaDecisionTreeClassificationExample 源码

spark JavaDecisionTreeRegressionExample 源码

spark JavaElementwiseProductExample 源码

spark JavaGaussianMixtureExample 源码

0  赞