spark JavaChiSqSelectorExample 源码

  • 2022-10-20
  • 浏览 (240)

spark JavaChiSqSelectorExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/mllib/JavaChiSqSelectorExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.mllib;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
// $example on$
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.feature.ChiSqSelector;
import org.apache.spark.mllib.feature.ChiSqSelectorModel;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
// $example off$

public class JavaChiSqSelectorExample {
  public static void main(String[] args) {

    SparkConf conf = new SparkConf().setAppName("JavaChiSqSelectorExample");
    JavaSparkContext jsc = new JavaSparkContext(conf);

    // $example on$
    JavaRDD<LabeledPoint> points = MLUtils.loadLibSVMFile(jsc.sc(),
      "data/mllib/sample_libsvm_data.txt").toJavaRDD().cache();

    // Discretize data in 16 equal bins since ChiSqSelector requires categorical features
    // Although features are doubles, the ChiSqSelector treats each unique value as a category
    JavaRDD<LabeledPoint> discretizedData = points.map(lp -> {
      double[] discretizedFeatures = new double[lp.features().size()];
      for (int i = 0; i < lp.features().size(); ++i) {
        discretizedFeatures[i] = Math.floor(lp.features().apply(i) / 16);
      }
      return new LabeledPoint(lp.label(), Vectors.dense(discretizedFeatures));
    });

    // Create ChiSqSelector that will select top 50 of 692 features
    ChiSqSelector selector = new ChiSqSelector(50);
    // Create ChiSqSelector model (selecting features)
    ChiSqSelectorModel transformer = selector.fit(discretizedData.rdd());
    // Filter the top 50 features from each feature vector
    JavaRDD<LabeledPoint> filteredData = discretizedData.map(lp ->
      new LabeledPoint(lp.label(), transformer.transform(lp.features())));
    // $example off$

    System.out.println("filtered data: ");
    filteredData.foreach(System.out::println);

    jsc.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaALS 源码

spark JavaAssociationRulesExample 源码

spark JavaBinaryClassificationMetricsExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaCorrelationsExample 源码

spark JavaDecisionTreeClassificationExample 源码

spark JavaDecisionTreeRegressionExample 源码

spark JavaElementwiseProductExample 源码

spark JavaGaussianMixtureExample 源码

spark JavaGradientBoostingClassificationExample 源码

0  赞