spark JavaDecisionTreeClassificationExample 源码

  • 2022-10-20
  • 浏览 (256)

spark JavaDecisionTreeClassificationExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/mllib/JavaDecisionTreeClassificationExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.mllib;

// $example on$
import java.util.HashMap;
import java.util.Map;

import scala.Tuple2;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.tree.DecisionTree;
import org.apache.spark.mllib.tree.model.DecisionTreeModel;
import org.apache.spark.mllib.util.MLUtils;
// $example off$

class JavaDecisionTreeClassificationExample {

  public static void main(String[] args) {

    // $example on$
    SparkConf sparkConf = new SparkConf().setAppName("JavaDecisionTreeClassificationExample");
    JavaSparkContext jsc = new JavaSparkContext(sparkConf);

    // Load and parse the data file.
    String datapath = "data/mllib/sample_libsvm_data.txt";
    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
    // Split the data into training and test sets (30% held out for testing)
    JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
    JavaRDD<LabeledPoint> trainingData = splits[0];
    JavaRDD<LabeledPoint> testData = splits[1];

    // Set parameters.
    //  Empty categoricalFeaturesInfo indicates all features are continuous.
    int numClasses = 2;
    Map<Integer, Integer> categoricalFeaturesInfo = new HashMap<>();
    String impurity = "gini";
    int maxDepth = 5;
    int maxBins = 32;

    // Train a DecisionTree model for classification.
    DecisionTreeModel model = DecisionTree.trainClassifier(trainingData, numClasses,
      categoricalFeaturesInfo, impurity, maxDepth, maxBins);

    // Evaluate model on test instances and compute test error
    JavaPairRDD<Double, Double> predictionAndLabel =
      testData.mapToPair(p -> new Tuple2<>(model.predict(p.features()), p.label()));
    double testErr =
      predictionAndLabel.filter(pl -> !pl._1().equals(pl._2())).count() / (double) testData.count();

    System.out.println("Test Error: " + testErr);
    System.out.println("Learned classification tree model:\n" + model.toDebugString());

    // Save and load model
    model.save(jsc.sc(), "target/tmp/myDecisionTreeClassificationModel");
    DecisionTreeModel sameModel = DecisionTreeModel
      .load(jsc.sc(), "target/tmp/myDecisionTreeClassificationModel");
    // $example off$
  }
}

相关信息

spark 源码目录

相关文章

spark JavaALS 源码

spark JavaAssociationRulesExample 源码

spark JavaBinaryClassificationMetricsExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaCorrelationsExample 源码

spark JavaDecisionTreeRegressionExample 源码

spark JavaElementwiseProductExample 源码

spark JavaGaussianMixtureExample 源码

spark JavaGradientBoostingClassificationExample 源码

0  赞