spark JavaGaussianMixtureExample 源码

  • 2022-10-20
  • 浏览 (256)

spark JavaGaussianMixtureExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/mllib/JavaGaussianMixtureExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.mllib;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;

// $example on$
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.clustering.GaussianMixture;
import org.apache.spark.mllib.clustering.GaussianMixtureModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
// $example off$

public class JavaGaussianMixtureExample {
  public static void main(String[] args) {

    SparkConf conf = new SparkConf().setAppName("JavaGaussianMixtureExample");
    JavaSparkContext jsc = new JavaSparkContext(conf);

    // $example on$
    // Load and parse data
    String path = "data/mllib/gmm_data.txt";
    JavaRDD<String> data = jsc.textFile(path);
    JavaRDD<Vector> parsedData = data.map(s -> {
      String[] sarray = s.trim().split(" ");
      double[] values = new double[sarray.length];
      for (int i = 0; i < sarray.length; i++) {
        values[i] = Double.parseDouble(sarray[i]);
      }
      return Vectors.dense(values);
    });
    parsedData.cache();

    // Cluster the data into two classes using GaussianMixture
    GaussianMixtureModel gmm = new GaussianMixture().setK(2).run(parsedData.rdd());

    // Save and load GaussianMixtureModel
    gmm.save(jsc.sc(), "target/org/apache/spark/JavaGaussianMixtureExample/GaussianMixtureModel");
    GaussianMixtureModel sameModel = GaussianMixtureModel.load(jsc.sc(),
      "target/org.apache.spark.JavaGaussianMixtureExample/GaussianMixtureModel");

    // Output the parameters of the mixture model
    for (int j = 0; j < gmm.k(); j++) {
      System.out.printf("weight=%f\nmu=%s\nsigma=\n%s\n",
        gmm.weights()[j], gmm.gaussians()[j].mu(), gmm.gaussians()[j].sigma());
    }
    // $example off$

    jsc.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaALS 源码

spark JavaAssociationRulesExample 源码

spark JavaBinaryClassificationMetricsExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaCorrelationsExample 源码

spark JavaDecisionTreeClassificationExample 源码

spark JavaDecisionTreeRegressionExample 源码

spark JavaElementwiseProductExample 源码

spark JavaGradientBoostingClassificationExample 源码

0  赞