spark LinearDataGenerator 源码
spark LinearDataGenerator 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.util
import scala.collection.JavaConverters._
import scala.util.Random
import org.apache.spark.SparkContext
import org.apache.spark.annotation.Since
import org.apache.spark.mllib.linalg.{BLAS, Vectors}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
/**
* Generate sample data used for Linear Data. This class generates
* uniformly random values for every feature and adds Gaussian noise with mean `eps` to the
* response variable `Y`.
*/
@Since("0.8.0")
object LinearDataGenerator {
/**
* Return a Java List of synthetic data randomly generated according to a multi
* collinear model.
* @param intercept Data intercept
* @param weights Weights to be applied.
* @param nPoints Number of points in sample.
* @param seed Random seed
* @return Java List of input.
*/
@Since("0.8.0")
def generateLinearInputAsList(
intercept: Double,
weights: Array[Double],
nPoints: Int,
seed: Int,
eps: Double): java.util.List[LabeledPoint] = {
generateLinearInput(intercept, weights, nPoints, seed, eps).asJava
}
/**
* For compatibility, the generated data without specifying the mean and variance
* will have zero mean and variance of (1.0/3.0) since the original output range is
* [-1, 1] with uniform distribution, and the variance of uniform distribution
* is (b - a)^2^ / 12 which will be (1.0/3.0)
*
* @param intercept Data intercept
* @param weights Weights to be applied.
* @param nPoints Number of points in sample.
* @param seed Random seed
* @param eps Epsilon scaling factor.
* @return Seq of input.
*/
@Since("0.8.0")
def generateLinearInput(
intercept: Double,
weights: Array[Double],
nPoints: Int,
seed: Int,
eps: Double = 0.1): Seq[LabeledPoint] = {
generateLinearInput(intercept, weights, Array.ofDim[Double](weights.length),
Array.fill[Double](weights.length)(1.0 / 3.0), nPoints, seed, eps)
}
/**
* @param intercept Data intercept
* @param weights Weights to be applied.
* @param xMean the mean of the generated features. Lots of time, if the features are not properly
* standardized, the algorithm with poor implementation will have difficulty
* to converge.
* @param xVariance the variance of the generated features.
* @param nPoints Number of points in sample.
* @param seed Random seed
* @param eps Epsilon scaling factor.
* @return Seq of input.
*/
@Since("0.8.0")
def generateLinearInput(
intercept: Double,
weights: Array[Double],
xMean: Array[Double],
xVariance: Array[Double],
nPoints: Int,
seed: Int,
eps: Double): Seq[LabeledPoint] = {
generateLinearInput(intercept, weights, xMean, xVariance, nPoints, seed, eps, 0.0)
}
/**
* @param intercept Data intercept
* @param weights Weights to be applied.
* @param xMean the mean of the generated features. Lots of time, if the features are not properly
* standardized, the algorithm with poor implementation will have difficulty
* to converge.
* @param xVariance the variance of the generated features.
* @param nPoints Number of points in sample.
* @param seed Random seed
* @param eps Epsilon scaling factor.
* @param sparsity The ratio of zero elements. If it is 0.0, LabeledPoints with
* DenseVector is returned.
* @return Seq of input.
*/
@Since("1.6.0")
def generateLinearInput(
intercept: Double,
weights: Array[Double],
xMean: Array[Double],
xVariance: Array[Double],
nPoints: Int,
seed: Int,
eps: Double,
sparsity: Double): Seq[LabeledPoint] = {
require(0.0 <= sparsity && sparsity <= 1.0)
val rnd = new Random(seed)
def rndElement(i: Int) = {(rnd.nextDouble() - 0.5) * math.sqrt(12.0 * xVariance(i)) + xMean(i)}
if (sparsity == 0.0) {
(0 until nPoints).map { _ =>
val features = Vectors.dense(weights.indices.map { rndElement(_) }.toArray)
val label = BLAS.dot(Vectors.dense(weights), features) +
intercept + eps * rnd.nextGaussian()
// Return LabeledPoints with DenseVector
LabeledPoint(label, features)
}
} else {
(0 until nPoints).map { _ =>
val indices = weights.indices.filter { _ => rnd.nextDouble() <= sparsity}
val values = indices.map { rndElement(_) }
val features = Vectors.sparse(weights.length, indices.toArray, values.toArray)
val label = BLAS.dot(Vectors.dense(weights), features) +
intercept + eps * rnd.nextGaussian()
// Return LabeledPoints with SparseVector
LabeledPoint(label, features)
}
}
}
/**
* Generate an RDD containing sample data for Linear Regression models - including Ridge, Lasso,
* and unregularized variants.
*
* @param sc SparkContext to be used for generating the RDD.
* @param nexamples Number of examples that will be contained in the RDD.
* @param nfeatures Number of features to generate for each example.
* @param eps Epsilon factor by which examples are scaled.
* @param nparts Number of partitions in the RDD. Default value is 2.
*
* @return RDD of LabeledPoint containing sample data.
*/
@Since("0.8.0")
def generateLinearRDD(
sc: SparkContext,
nexamples: Int,
nfeatures: Int,
eps: Double,
nparts: Int = 2,
intercept: Double = 0.0): RDD[LabeledPoint] = {
val random = new Random(42)
// Random values distributed uniformly in [-0.5, 0.5]
val w = Array.fill(nfeatures)(random.nextDouble() - 0.5)
val data: RDD[LabeledPoint] = sc.parallelize(0 until nparts, nparts).flatMap { p =>
val seed = 42 + p
val examplesInPartition = nexamples / nparts
generateLinearInput(intercept, w, examplesInPartition, seed, eps)
}
data
}
@Since("0.8.0")
def main(args: Array[String]): Unit = {
if (args.length < 2) {
// scalastyle:off println
println("Usage: LinearDataGenerator " +
"<master> <output_dir> [num_examples] [num_features] [num_partitions]")
// scalastyle:on println
System.exit(1)
}
val sparkMaster: String = args(0)
val outputPath: String = args(1)
val nexamples: Int = if (args.length > 2) args(2).toInt else 1000
val nfeatures: Int = if (args.length > 3) args(3).toInt else 100
val parts: Int = if (args.length > 4) args(4).toInt else 2
val eps = 10
val sc = new SparkContext(sparkMaster, "LinearDataGenerator")
val data = generateLinearRDD(sc, nexamples, nfeatures, eps, nparts = parts)
data.saveAsTextFile(outputPath)
sc.stop()
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦