spark LinearDataGenerator 源码

  • 2022-10-20
  • 浏览 (230)

spark LinearDataGenerator 代码

文件路径:/mllib/src/main/scala/org/apache/spark/mllib/util/LinearDataGenerator.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.mllib.util

import scala.collection.JavaConverters._
import scala.util.Random

import org.apache.spark.SparkContext
import org.apache.spark.annotation.Since
import org.apache.spark.mllib.linalg.{BLAS, Vectors}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD

/**
 * Generate sample data used for Linear Data. This class generates
 * uniformly random values for every feature and adds Gaussian noise with mean `eps` to the
 * response variable `Y`.
 */
@Since("0.8.0")
object LinearDataGenerator {

  /**
   * Return a Java List of synthetic data randomly generated according to a multi
   * collinear model.
   * @param intercept Data intercept
   * @param weights  Weights to be applied.
   * @param nPoints Number of points in sample.
   * @param seed Random seed
   * @return Java List of input.
   */
  @Since("0.8.0")
  def generateLinearInputAsList(
      intercept: Double,
      weights: Array[Double],
      nPoints: Int,
      seed: Int,
      eps: Double): java.util.List[LabeledPoint] = {
    generateLinearInput(intercept, weights, nPoints, seed, eps).asJava
  }

  /**
   * For compatibility, the generated data without specifying the mean and variance
   * will have zero mean and variance of (1.0/3.0) since the original output range is
   * [-1, 1] with uniform distribution, and the variance of uniform distribution
   * is (b - a)^2^ / 12 which will be (1.0/3.0)
   *
   * @param intercept Data intercept
   * @param weights  Weights to be applied.
   * @param nPoints Number of points in sample.
   * @param seed Random seed
   * @param eps Epsilon scaling factor.
   * @return Seq of input.
   */
  @Since("0.8.0")
  def generateLinearInput(
      intercept: Double,
      weights: Array[Double],
      nPoints: Int,
      seed: Int,
      eps: Double = 0.1): Seq[LabeledPoint] = {
    generateLinearInput(intercept, weights, Array.ofDim[Double](weights.length),
      Array.fill[Double](weights.length)(1.0 / 3.0), nPoints, seed, eps)
  }

  /**
   * @param intercept Data intercept
   * @param weights  Weights to be applied.
   * @param xMean the mean of the generated features. Lots of time, if the features are not properly
   *              standardized, the algorithm with poor implementation will have difficulty
   *              to converge.
   * @param xVariance the variance of the generated features.
   * @param nPoints Number of points in sample.
   * @param seed Random seed
   * @param eps Epsilon scaling factor.
   * @return Seq of input.
   */
  @Since("0.8.0")
  def generateLinearInput(
      intercept: Double,
      weights: Array[Double],
      xMean: Array[Double],
      xVariance: Array[Double],
      nPoints: Int,
      seed: Int,
      eps: Double): Seq[LabeledPoint] = {
    generateLinearInput(intercept, weights, xMean, xVariance, nPoints, seed, eps, 0.0)
  }


  /**
   * @param intercept Data intercept
   * @param weights  Weights to be applied.
   * @param xMean the mean of the generated features. Lots of time, if the features are not properly
   *              standardized, the algorithm with poor implementation will have difficulty
   *              to converge.
   * @param xVariance the variance of the generated features.
   * @param nPoints Number of points in sample.
   * @param seed Random seed
   * @param eps Epsilon scaling factor.
   * @param sparsity The ratio of zero elements. If it is 0.0, LabeledPoints with
   *                 DenseVector is returned.
   * @return Seq of input.
   */
  @Since("1.6.0")
  def generateLinearInput(
      intercept: Double,
      weights: Array[Double],
      xMean: Array[Double],
      xVariance: Array[Double],
      nPoints: Int,
      seed: Int,
      eps: Double,
      sparsity: Double): Seq[LabeledPoint] = {
    require(0.0 <= sparsity && sparsity <= 1.0)

    val rnd = new Random(seed)
    def rndElement(i: Int) = {(rnd.nextDouble() - 0.5) * math.sqrt(12.0 * xVariance(i)) + xMean(i)}

    if (sparsity == 0.0) {
      (0 until nPoints).map { _ =>
        val features = Vectors.dense(weights.indices.map { rndElement(_) }.toArray)
        val label = BLAS.dot(Vectors.dense(weights), features) +
          intercept + eps * rnd.nextGaussian()
        // Return LabeledPoints with DenseVector
        LabeledPoint(label, features)
      }
    } else {
      (0 until nPoints).map { _ =>
        val indices = weights.indices.filter { _ => rnd.nextDouble() <= sparsity}
        val values = indices.map { rndElement(_) }
        val features = Vectors.sparse(weights.length, indices.toArray, values.toArray)
        val label = BLAS.dot(Vectors.dense(weights), features) +
          intercept + eps * rnd.nextGaussian()
        // Return LabeledPoints with SparseVector
        LabeledPoint(label, features)
      }
    }
  }

  /**
   * Generate an RDD containing sample data for Linear Regression models - including Ridge, Lasso,
   * and unregularized variants.
   *
   * @param sc SparkContext to be used for generating the RDD.
   * @param nexamples Number of examples that will be contained in the RDD.
   * @param nfeatures Number of features to generate for each example.
   * @param eps Epsilon factor by which examples are scaled.
   * @param nparts Number of partitions in the RDD. Default value is 2.
   *
   * @return RDD of LabeledPoint containing sample data.
   */
  @Since("0.8.0")
  def generateLinearRDD(
      sc: SparkContext,
      nexamples: Int,
      nfeatures: Int,
      eps: Double,
      nparts: Int = 2,
      intercept: Double = 0.0): RDD[LabeledPoint] = {
    val random = new Random(42)
    // Random values distributed uniformly in [-0.5, 0.5]
    val w = Array.fill(nfeatures)(random.nextDouble() - 0.5)

    val data: RDD[LabeledPoint] = sc.parallelize(0 until nparts, nparts).flatMap { p =>
      val seed = 42 + p
      val examplesInPartition = nexamples / nparts
      generateLinearInput(intercept, w, examplesInPartition, seed, eps)
    }
    data
  }

  @Since("0.8.0")
  def main(args: Array[String]): Unit = {
    if (args.length < 2) {
      // scalastyle:off println
      println("Usage: LinearDataGenerator " +
        "<master> <output_dir> [num_examples] [num_features] [num_partitions]")
      // scalastyle:on println
      System.exit(1)
    }

    val sparkMaster: String = args(0)
    val outputPath: String = args(1)
    val nexamples: Int = if (args.length > 2) args(2).toInt else 1000
    val nfeatures: Int = if (args.length > 3) args(3).toInt else 100
    val parts: Int = if (args.length > 4) args(4).toInt else 2
    val eps = 10

    val sc = new SparkContext(sparkMaster, "LinearDataGenerator")
    val data = generateLinearRDD(sc, nexamples, nfeatures, eps, nparts = parts)

    data.saveAsTextFile(outputPath)

    sc.stop()
  }
}

相关信息

spark 源码目录

相关文章

spark DataValidators 源码

spark KMeansDataGenerator 源码

spark LogisticRegressionDataGenerator 源码

spark MFDataGenerator 源码

spark MLUtils 源码

spark NumericParser 源码

spark SVMDataGenerator 源码

spark modelSaveLoad 源码

0  赞