spark KMeansDataGenerator 源码
spark KMeansDataGenerator 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/util/KMeansDataGenerator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.util
import scala.util.Random
import org.apache.spark.SparkContext
import org.apache.spark.annotation.Since
import org.apache.spark.rdd.RDD
/**
* Generate test data for KMeans. This class first chooses k cluster centers
* from a d-dimensional Gaussian distribution scaled by factor r and then creates a Gaussian
* cluster with scale 1 around each center.
*/
@Since("0.8.0")
object KMeansDataGenerator {
/**
* Generate an RDD containing test data for KMeans.
*
* @param sc SparkContext to use for creating the RDD
* @param numPoints Number of points that will be contained in the RDD
* @param k Number of clusters
* @param d Number of dimensions
* @param r Scaling factor for the distribution of the initial centers
* @param numPartitions Number of partitions of the generated RDD; default 2
*/
@Since("0.8.0")
def generateKMeansRDD(
sc: SparkContext,
numPoints: Int,
k: Int,
d: Int,
r: Double,
numPartitions: Int = 2)
: RDD[Array[Double]] =
{
// First, generate some centers
val rand = new Random(42)
val centers = Array.fill(k)(Array.fill(d)(rand.nextGaussian() * r))
// Then generate points around each center
sc.parallelize(0 until numPoints, numPartitions).map { idx =>
val center = centers(idx % k)
val rand2 = new Random(42 + idx)
Array.tabulate(d)(i => center(i) + rand2.nextGaussian())
}
}
@Since("0.8.0")
def main(args: Array[String]): Unit = {
if (args.length < 6) {
// scalastyle:off println
println("Usage: KMeansGenerator " +
"<master> <output_dir> <num_points> <k> <d> <r> [<num_partitions>]")
// scalastyle:on println
System.exit(1)
}
val sparkMaster = args(0)
val outputPath = args(1)
val numPoints = args(2).toInt
val k = args(3).toInt
val d = args(4).toInt
val r = args(5).toDouble
val parts = if (args.length >= 7) args(6).toInt else 2
val sc = new SparkContext(sparkMaster, "KMeansDataGenerator")
val data = generateKMeansRDD(sc, numPoints, k, d, r, parts)
data.map(_.mkString(" ")).saveAsTextFile(outputPath)
sc.stop()
System.exit(0)
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦