spark SVMDataGenerator 源码
spark SVMDataGenerator 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/util/SVMDataGenerator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.util
import scala.util.Random
import org.apache.spark.SparkContext
import org.apache.spark.annotation.Since
import org.apache.spark.ml.linalg.BLAS
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
/**
* Generate sample data used for SVM. This class generates uniform random values
* for the features and adds Gaussian noise with weight 0.1 to generate labels.
*/
@Since("0.8.0")
object SVMDataGenerator {
@Since("0.8.0")
def main(args: Array[String]): Unit = {
if (args.length < 2) {
// scalastyle:off println
println("Usage: SVMGenerator " +
"<master> <output_dir> [num_examples] [num_features] [num_partitions]")
// scalastyle:on println
System.exit(1)
}
val sparkMaster: String = args(0)
val outputPath: String = args(1)
val nexamples: Int = if (args.length > 2) args(2).toInt else 1000
val nfeatures: Int = if (args.length > 3) args(3).toInt else 2
val parts: Int = if (args.length > 4) args(4).toInt else 2
val sc = new SparkContext(sparkMaster, "SVMGenerator")
val globalRnd = new Random(94720)
val trueWeights = Array.fill[Double](nfeatures)(globalRnd.nextGaussian())
val data: RDD[LabeledPoint] = sc.parallelize(0 until nexamples, parts).map { idx =>
val rnd = new Random(42 + idx)
val x = Array.fill[Double](nfeatures) {
rnd.nextDouble() * 2.0 - 1.0
}
val yD = BLAS.nativeBLAS.ddot(trueWeights.length, x, 1, trueWeights, 1)
+ rnd.nextGaussian() * 0.1
val y = if (yD < 0) 0.0 else 1.0
LabeledPoint(y, Vectors.dense(x))
}
data.saveAsTextFile(outputPath)
sc.stop()
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦