spark LogisticRegressionDataGenerator 源码
spark LogisticRegressionDataGenerator 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/util/LogisticRegressionDataGenerator.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.util
import scala.util.Random
import org.apache.spark.SparkContext
import org.apache.spark.annotation.Since
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
/**
* Generate test data for LogisticRegression. This class chooses positive labels
* with probability `probOne` and scales features for positive examples by `eps`.
*/
@Since("0.8.0")
object LogisticRegressionDataGenerator {
/**
* Generate an RDD containing test data for LogisticRegression.
*
* @param sc SparkContext to use for creating the RDD.
* @param nexamples Number of examples that will be contained in the RDD.
* @param nfeatures Number of features to generate for each example.
* @param eps Epsilon factor by which positive examples are scaled.
* @param nparts Number of partitions of the generated RDD. Default value is 2.
* @param probOne Probability that a label is 1 (and not 0). Default value is 0.5.
*/
@Since("0.8.0")
def generateLogisticRDD(
sc: SparkContext,
nexamples: Int,
nfeatures: Int,
eps: Double,
nparts: Int = 2,
probOne: Double = 0.5): RDD[LabeledPoint] = {
val data = sc.parallelize(0 until nexamples, nparts).map { idx =>
val rnd = new Random(42 + idx)
val y = if (idx % 2 == 0) 0.0 else 1.0
val x = Array.fill[Double](nfeatures) {
rnd.nextGaussian() + (y * eps)
}
LabeledPoint(y, Vectors.dense(x))
}
data
}
@Since("0.8.0")
def main(args: Array[String]): Unit = {
if (args.length != 5) {
// scalastyle:off println
println("Usage: LogisticRegressionGenerator " +
"<master> <output_dir> <num_examples> <num_features> <num_partitions>")
// scalastyle:on println
System.exit(1)
}
val sparkMaster: String = args(0)
val outputPath: String = args(1)
val nexamples: Int = if (args.length > 2) args(2).toInt else 1000
val nfeatures: Int = if (args.length > 3) args(3).toInt else 2
val parts: Int = if (args.length > 4) args(4).toInt else 2
val eps = 3
val sc = new SparkContext(sparkMaster, "LogisticRegressionDataGenerator")
val data = generateLogisticRDD(sc, nexamples, nfeatures, eps, parts)
data.saveAsTextFile(outputPath)
sc.stop()
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦