spark JavaIsotonicRegressionExample 源码
spark JavaIsotonicRegressionExample 代码
文件路径:/examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
// $example on$
import scala.Tuple2;
import scala.Tuple3;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.regression.IsotonicRegression;
import org.apache.spark.mllib.regression.IsotonicRegressionModel;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
// $example off$
import org.apache.spark.SparkConf;
public class JavaIsotonicRegressionExample {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("JavaIsotonicRegressionExample");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// $example on$
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(
jsc.sc(), "data/mllib/sample_isotonic_regression_libsvm_data.txt").toJavaRDD();
// Create label, feature, weight tuples from input data with weight set to default value 1.0.
JavaRDD<Tuple3<Double, Double, Double>> parsedData = data.map(point ->
new Tuple3<>(point.label(), point.features().apply(0), 1.0));
// Split data into training (60%) and test (40%) sets.
JavaRDD<Tuple3<Double, Double, Double>>[] splits =
parsedData.randomSplit(new double[]{0.6, 0.4}, 11L);
JavaRDD<Tuple3<Double, Double, Double>> training = splits[0];
JavaRDD<Tuple3<Double, Double, Double>> test = splits[1];
// Create isotonic regression model from training data.
// Isotonic parameter defaults to true so it is only shown for demonstration
IsotonicRegressionModel model = new IsotonicRegression().setIsotonic(true).run(training);
// Create tuples of predicted and real labels.
JavaPairRDD<Double, Double> predictionAndLabel = test.mapToPair(point ->
new Tuple2<>(model.predict(point._2()), point._1()));
// Calculate mean squared error between predicted and real labels.
double meanSquaredError = predictionAndLabel.mapToDouble(pl -> {
double diff = pl._1() - pl._2();
return diff * diff;
}).mean();
System.out.println("Mean Squared Error = " + meanSquaredError);
// Save and load model
model.save(jsc.sc(), "target/tmp/myIsotonicRegressionModel");
IsotonicRegressionModel sameModel =
IsotonicRegressionModel.load(jsc.sc(), "target/tmp/myIsotonicRegressionModel");
// $example off$
jsc.stop();
}
}
相关信息
相关文章
spark JavaAssociationRulesExample 源码
spark JavaBinaryClassificationMetricsExample 源码
spark JavaBisectingKMeansExample 源码
spark JavaChiSqSelectorExample 源码
spark JavaCorrelationsExample 源码
spark JavaDecisionTreeClassificationExample 源码
spark JavaDecisionTreeRegressionExample 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦