spark JavaIsotonicRegressionExample 源码

  • 2022-10-20
  • 浏览 (209)

spark JavaIsotonicRegressionExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.examples.mllib;

// $example on$

import scala.Tuple2;
import scala.Tuple3;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.regression.IsotonicRegression;
import org.apache.spark.mllib.regression.IsotonicRegressionModel;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
// $example off$
import org.apache.spark.SparkConf;

public class JavaIsotonicRegressionExample {
  public static void main(String[] args) {
    SparkConf sparkConf = new SparkConf().setAppName("JavaIsotonicRegressionExample");
    JavaSparkContext jsc = new JavaSparkContext(sparkConf);
    // $example on$
    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(
      jsc.sc(), "data/mllib/sample_isotonic_regression_libsvm_data.txt").toJavaRDD();

    // Create label, feature, weight tuples from input data with weight set to default value 1.0.
    JavaRDD<Tuple3<Double, Double, Double>> parsedData = data.map(point ->
      new Tuple3<>(point.label(), point.features().apply(0), 1.0));

    // Split data into training (60%) and test (40%) sets.
    JavaRDD<Tuple3<Double, Double, Double>>[] splits =
      parsedData.randomSplit(new double[]{0.6, 0.4}, 11L);
    JavaRDD<Tuple3<Double, Double, Double>> training = splits[0];
    JavaRDD<Tuple3<Double, Double, Double>> test = splits[1];

    // Create isotonic regression model from training data.
    // Isotonic parameter defaults to true so it is only shown for demonstration
    IsotonicRegressionModel model = new IsotonicRegression().setIsotonic(true).run(training);

    // Create tuples of predicted and real labels.
    JavaPairRDD<Double, Double> predictionAndLabel = test.mapToPair(point ->
      new Tuple2<>(model.predict(point._2()), point._1()));

    // Calculate mean squared error between predicted and real labels.
    double meanSquaredError = predictionAndLabel.mapToDouble(pl -> {
      double diff = pl._1() - pl._2();
      return diff * diff;
    }).mean();
    System.out.println("Mean Squared Error = " + meanSquaredError);

    // Save and load model
    model.save(jsc.sc(), "target/tmp/myIsotonicRegressionModel");
    IsotonicRegressionModel sameModel =
      IsotonicRegressionModel.load(jsc.sc(), "target/tmp/myIsotonicRegressionModel");
    // $example off$

    jsc.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaALS 源码

spark JavaAssociationRulesExample 源码

spark JavaBinaryClassificationMetricsExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaCorrelationsExample 源码

spark JavaDecisionTreeClassificationExample 源码

spark JavaDecisionTreeRegressionExample 源码

spark JavaElementwiseProductExample 源码

spark JavaGaussianMixtureExample 源码

0  赞