spark SparseNaiveBayes 源码

  • 2022-10-20
  • 浏览 (230)

spark SparseNaiveBayes 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/SparseNaiveBayes.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.logging.log4j.Level
import org.apache.logging.log4j.core.config.Configurator
import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.util.MLUtils

/**
 * An example naive Bayes app. Run with
 * {{{
 * ./bin/run-example org.apache.spark.examples.mllib.SparseNaiveBayes [options] <input>
 * }}}
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 */
object SparseNaiveBayes {

  case class Params(
      input: String = null,
      minPartitions: Int = 0,
      numFeatures: Int = -1,
      lambda: Double = 1.0) extends AbstractParams[Params]

  def main(args: Array[String]): Unit = {
    val defaultParams = Params()

    val parser = new OptionParser[Params]("SparseNaiveBayes") {
      head("SparseNaiveBayes: an example naive Bayes app for LIBSVM data.")
      opt[Int]("numPartitions")
        .text("min number of partitions")
        .action((x, c) => c.copy(minPartitions = x))
      opt[Int]("numFeatures")
        .text("number of features")
        .action((x, c) => c.copy(numFeatures = x))
      opt[Double]("lambda")
        .text(s"lambda (smoothing constant), default: ${defaultParams.lambda}")
        .action((x, c) => c.copy(lambda = x))
      arg[String]("<input>")
        .text("input paths to labeled examples in LIBSVM format")
        .required()
        .action((x, c) => c.copy(input = x))
    }

    parser.parse(args, defaultParams) match {
      case Some(params) => run(params)
      case _ => sys.exit(1)
    }
  }

  def run(params: Params): Unit = {
    val conf = new SparkConf().setAppName(s"SparseNaiveBayes with $params")
    val sc = new SparkContext(conf)

    Configurator.setRootLevel(Level.WARN)

    val minPartitions =
      if (params.minPartitions > 0) params.minPartitions else sc.defaultMinPartitions

    val examples =
      MLUtils.loadLibSVMFile(sc, params.input, params.numFeatures, minPartitions)
    // Cache examples because it will be used in both training and evaluation.
    examples.cache()

    val splits = examples.randomSplit(Array(0.8, 0.2))
    val training = splits(0)
    val test = splits(1)

    val numTraining = training.count()
    val numTest = test.count()

    println(s"numTraining = $numTraining, numTest = $numTest.")

    val model = new NaiveBayes().setLambda(params.lambda).run(training)

    val prediction = model.predict(test.map(_.features))
    val predictionAndLabel = prediction.zip(test.map(_.label))
    val accuracy = predictionAndLabel.filter(x => x._1 == x._2).count().toDouble / numTest

    println(s"Test accuracy = $accuracy.")

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞