spark SampledRDDs 源码

  • 2022-10-20
  • 浏览 (219)

spark SampledRDDs 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/SampledRDDs.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.util.MLUtils

/**
 * An example app for randomly generated and sampled RDDs. Run with
 * {{{
 * bin/run-example org.apache.spark.examples.mllib.SampledRDDs
 * }}}
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 */
object SampledRDDs {

  case class Params(input: String = "data/mllib/sample_binary_classification_data.txt")
    extends AbstractParams[Params]

  def main(args: Array[String]): Unit = {
    val defaultParams = Params()

    val parser = new OptionParser[Params]("SampledRDDs") {
      head("SampledRDDs: an example app for randomly generated and sampled RDDs.")
      opt[String]("input")
        .text(s"Input path to labeled examples in LIBSVM format, default: ${defaultParams.input}")
        .action((x, c) => c.copy(input = x))
      note(
        """
        |For example, the following command runs this app:
        |
        | bin/spark-submit --class org.apache.spark.examples.mllib.SampledRDDs \
        |  examples/target/scala-*/spark-examples-*.jar
        """.stripMargin)
    }

    parser.parse(args, defaultParams) match {
      case Some(params) => run(params)
      case _ => sys.exit(1)
    }
  }

  def run(params: Params): Unit = {
    val conf = new SparkConf().setAppName(s"SampledRDDs with $params")
    val sc = new SparkContext(conf)

    val fraction = 0.1 // fraction of data to sample

    val examples = MLUtils.loadLibSVMFile(sc, params.input)
    val numExamples = examples.count()
    if (numExamples == 0) {
      throw new RuntimeException("Error: Data file had no samples to load.")
    }
    println(s"Loaded data with $numExamples examples from file: ${params.input}")

    // Example: RDD.sample() and RDD.takeSample()
    val expectedSampleSize = (numExamples * fraction).toInt
    println(s"Sampling RDD using fraction $fraction.  Expected sample size = $expectedSampleSize.")
    val sampledRDD = examples.sample(withReplacement = true, fraction = fraction)
    println(s"  RDD.sample(): sample has ${sampledRDD.count()} examples")
    val sampledArray = examples.takeSample(withReplacement = true, num = expectedSampleSize)
    println(s"  RDD.takeSample(): sample has ${sampledArray.length} examples")

    println()

    // Example: RDD.sampleByKey() and RDD.sampleByKeyExact()
    val keyedRDD = examples.map { lp => (lp.label.toInt, lp.features) }
    println(s"  Keyed data using label (Int) as key ==> Orig")
    //  Count examples per label in original data.
    val keyCounts = keyedRDD.countByKey()

    //  Subsample, and count examples per label in sampled data. (approximate)
    val fractions = keyCounts.keys.map((_, fraction)).toMap
    val sampledByKeyRDD = keyedRDD.sampleByKey(withReplacement = true, fractions = fractions)
    val keyCountsB = sampledByKeyRDD.countByKey()
    val sizeB = keyCountsB.values.sum
    println(s"  Sampled $sizeB examples using approximate stratified sampling (by label)." +
      " ==> Approx Sample")

    //  Subsample, and count examples per label in sampled data. (approximate)
    val sampledByKeyRDDExact =
      keyedRDD.sampleByKeyExact(withReplacement = true, fractions = fractions)
    val keyCountsBExact = sampledByKeyRDDExact.countByKey()
    val sizeBExact = keyCountsBExact.values.sum
    println(s"  Sampled $sizeBExact examples using exact stratified sampling (by label)." +
      " ==> Exact Sample")

    //  Compare samples
    println(s"   \tFractions of examples with key")
    println(s"Key\tOrig\tApprox Sample\tExact Sample")
    keyCounts.keys.toSeq.sorted.foreach { key =>
      val origFrac = keyCounts(key) / numExamples.toDouble
      val approxFrac = if (sizeB != 0) {
        keyCountsB.getOrElse(key, 0L) / sizeB.toDouble
      } else {
        0
      }
      val exactFrac = if (sizeBExact != 0) {
        keyCountsBExact.getOrElse(key, 0L) / sizeBExact.toDouble
      } else {
        0
      }
      println(s"$key\t$origFrac\t$approxFrac\t$exactFrac")
    }

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞