kafka TimeWindowedKStream 源码

  • 2022-10-20
  • 浏览 (246)

kafka TimeWindowedKStream 代码

文件路径:/streams/streams-scala/src/main/scala/org/apache/kafka/streams/scala/kstream/TimeWindowedKStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.scala
package kstream

import org.apache.kafka.streams.kstream.internals.KTableImpl
import org.apache.kafka.streams.scala.serialization.Serdes
import org.apache.kafka.streams.kstream.{KTable => KTableJ, TimeWindowedKStream => TimeWindowedKStreamJ, Windowed}
import org.apache.kafka.streams.scala.FunctionsCompatConversions.{
  AggregatorFromFunction,
  InitializerFromFunction,
  ReducerFromFunction,
  ValueMapperFromFunction
}

/**
 * Wraps the Java class TimeWindowedKStream and delegates method calls to the underlying Java object.
 *
 * @tparam K Type of keys
 * @tparam V Type of values
 * @param inner The underlying Java abstraction for TimeWindowedKStream
 * @see `org.apache.kafka.streams.kstream.TimeWindowedKStream`
 */
class TimeWindowedKStream[K, V](val inner: TimeWindowedKStreamJ[K, V]) {

  /**
   * Aggregate the values of records in this stream by the grouped key.
   *
   * @param initializer  an initializer function that computes an initial intermediate aggregation result
   * @param aggregator   an aggregator function that computes a new aggregate result
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
   *         latest (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#aggregate`
   */
  def aggregate[VR](initializer: => VR)(aggregator: (K, V, VR) => VR)(implicit
    materialized: Materialized[K, VR, ByteArrayWindowStore]
  ): KTable[Windowed[K], VR] =
    new KTable(inner.aggregate((() => initializer).asInitializer, aggregator.asAggregator, materialized))

  /**
   * Aggregate the values of records in this stream by the grouped key.
   *
   * @param initializer  an initializer function that computes an initial intermediate aggregation result
   * @param named        a [[Named]] config used to name the processor in the topology
   * @param aggregator   an aggregator function that computes a new aggregate result
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
   *         latest (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#aggregate`
   */
  def aggregate[VR](initializer: => VR, named: Named)(aggregator: (K, V, VR) => VR)(implicit
    materialized: Materialized[K, VR, ByteArrayWindowStore]
  ): KTable[Windowed[K], VR] =
    new KTable(inner.aggregate((() => initializer).asInitializer, aggregator.asAggregator, named, materialized))

  /**
   * Count the number of records in this stream by the grouped key and the defined windows.
   *
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
   *         represent the latest (rolling) count (i.e., number of records) for each key
   * @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#count`
   */
  def count()(implicit materialized: Materialized[K, Long, ByteArrayWindowStore]): KTable[Windowed[K], Long] = {
    val javaCountTable: KTableJ[Windowed[K], java.lang.Long] =
      inner.count(materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayWindowStore]])
    val tableImpl = javaCountTable.asInstanceOf[KTableImpl[Windowed[K], ByteArrayWindowStore, java.lang.Long]]
    new KTable(
      javaCountTable.mapValues[Long](
        ((l: java.lang.Long) => Long2long(l)).asValueMapper,
        Materialized.`with`[Windowed[K], Long, ByteArrayKeyValueStore](tableImpl.keySerde(), Serdes.longSerde)
      )
    )
  }

  /**
   * Count the number of records in this stream by the grouped key and the defined windows.
   *
   * @param named        a [[Named]] config used to name the processor in the topology
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
   *         represent the latest (rolling) count (i.e., number of records) for each key
   * @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#count`
   */
  def count(
    named: Named
  )(implicit materialized: Materialized[K, Long, ByteArrayWindowStore]): KTable[Windowed[K], Long] = {
    val javaCountTable: KTableJ[Windowed[K], java.lang.Long] =
      inner.count(named, materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayWindowStore]])
    val tableImpl = javaCountTable.asInstanceOf[KTableImpl[Windowed[K], ByteArrayWindowStore, java.lang.Long]]
    new KTable(
      javaCountTable.mapValues[Long](
        ((l: java.lang.Long) => Long2long(l)).asValueMapper,
        Materialized.`with`[Windowed[K], Long, ByteArrayKeyValueStore](tableImpl.keySerde(), Serdes.longSerde)
      )
    )
  }

  /**
   * Combine the values of records in this stream by the grouped key.
   *
   * @param reducer      a function that computes a new aggregate result
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
   *         latest (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#reduce`
   */
  def reduce(reducer: (V, V) => V)(implicit
    materialized: Materialized[K, V, ByteArrayWindowStore]
  ): KTable[Windowed[K], V] =
    new KTable(inner.reduce(reducer.asReducer, materialized))

  /**
   * Combine the values of records in this stream by the grouped key.
   *
   * @param reducer      a function that computes a new aggregate result
   * @param named        a [[Named]] config used to name the processor in the topology
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
   *         latest (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#reduce`
   */
  def reduce(reducer: (V, V) => V, named: Named)(implicit
    materialized: Materialized[K, V, ByteArrayWindowStore]
  ): KTable[Windowed[K], V] =
    new KTable(inner.reduce(reducer.asReducer, materialized))
}

相关信息

kafka 源码目录

相关文章

kafka Branched 源码

kafka BranchedKStream 源码

kafka CogroupedKStream 源码

kafka Consumed 源码

kafka Grouped 源码

kafka Joined 源码

kafka KGroupedStream 源码

kafka KGroupedTable 源码

kafka KStream 源码

kafka KTable 源码

0  赞