kafka TimeWindowedKStream 源码
kafka TimeWindowedKStream 代码
文件路径:/streams/streams-scala/src/main/scala/org/apache/kafka/streams/scala/kstream/TimeWindowedKStream.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.scala
package kstream
import org.apache.kafka.streams.kstream.internals.KTableImpl
import org.apache.kafka.streams.scala.serialization.Serdes
import org.apache.kafka.streams.kstream.{KTable => KTableJ, TimeWindowedKStream => TimeWindowedKStreamJ, Windowed}
import org.apache.kafka.streams.scala.FunctionsCompatConversions.{
AggregatorFromFunction,
InitializerFromFunction,
ReducerFromFunction,
ValueMapperFromFunction
}
/**
* Wraps the Java class TimeWindowedKStream and delegates method calls to the underlying Java object.
*
* @tparam K Type of keys
* @tparam V Type of values
* @param inner The underlying Java abstraction for TimeWindowedKStream
* @see `org.apache.kafka.streams.kstream.TimeWindowedKStream`
*/
class TimeWindowedKStream[K, V](val inner: TimeWindowedKStreamJ[K, V]) {
/**
* Aggregate the values of records in this stream by the grouped key.
*
* @param initializer an initializer function that computes an initial intermediate aggregation result
* @param aggregator an aggregator function that computes a new aggregate result
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#aggregate`
*/
def aggregate[VR](initializer: => VR)(aggregator: (K, V, VR) => VR)(implicit
materialized: Materialized[K, VR, ByteArrayWindowStore]
): KTable[Windowed[K], VR] =
new KTable(inner.aggregate((() => initializer).asInitializer, aggregator.asAggregator, materialized))
/**
* Aggregate the values of records in this stream by the grouped key.
*
* @param initializer an initializer function that computes an initial intermediate aggregation result
* @param named a [[Named]] config used to name the processor in the topology
* @param aggregator an aggregator function that computes a new aggregate result
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#aggregate`
*/
def aggregate[VR](initializer: => VR, named: Named)(aggregator: (K, V, VR) => VR)(implicit
materialized: Materialized[K, VR, ByteArrayWindowStore]
): KTable[Windowed[K], VR] =
new KTable(inner.aggregate((() => initializer).asInitializer, aggregator.asAggregator, named, materialized))
/**
* Count the number of records in this stream by the grouped key and the defined windows.
*
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
* represent the latest (rolling) count (i.e., number of records) for each key
* @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#count`
*/
def count()(implicit materialized: Materialized[K, Long, ByteArrayWindowStore]): KTable[Windowed[K], Long] = {
val javaCountTable: KTableJ[Windowed[K], java.lang.Long] =
inner.count(materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayWindowStore]])
val tableImpl = javaCountTable.asInstanceOf[KTableImpl[Windowed[K], ByteArrayWindowStore, java.lang.Long]]
new KTable(
javaCountTable.mapValues[Long](
((l: java.lang.Long) => Long2long(l)).asValueMapper,
Materialized.`with`[Windowed[K], Long, ByteArrayKeyValueStore](tableImpl.keySerde(), Serdes.longSerde)
)
)
}
/**
* Count the number of records in this stream by the grouped key and the defined windows.
*
* @param named a [[Named]] config used to name the processor in the topology
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
* represent the latest (rolling) count (i.e., number of records) for each key
* @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#count`
*/
def count(
named: Named
)(implicit materialized: Materialized[K, Long, ByteArrayWindowStore]): KTable[Windowed[K], Long] = {
val javaCountTable: KTableJ[Windowed[K], java.lang.Long] =
inner.count(named, materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayWindowStore]])
val tableImpl = javaCountTable.asInstanceOf[KTableImpl[Windowed[K], ByteArrayWindowStore, java.lang.Long]]
new KTable(
javaCountTable.mapValues[Long](
((l: java.lang.Long) => Long2long(l)).asValueMapper,
Materialized.`with`[Windowed[K], Long, ByteArrayKeyValueStore](tableImpl.keySerde(), Serdes.longSerde)
)
)
}
/**
* Combine the values of records in this stream by the grouped key.
*
* @param reducer a function that computes a new aggregate result
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#reduce`
*/
def reduce(reducer: (V, V) => V)(implicit
materialized: Materialized[K, V, ByteArrayWindowStore]
): KTable[Windowed[K], V] =
new KTable(inner.reduce(reducer.asReducer, materialized))
/**
* Combine the values of records in this stream by the grouped key.
*
* @param reducer a function that computes a new aggregate result
* @param named a [[Named]] config used to name the processor in the topology
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.TimeWindowedKStream#reduce`
*/
def reduce(reducer: (V, V) => V, named: Named)(implicit
materialized: Materialized[K, V, ByteArrayWindowStore]
): KTable[Windowed[K], V] =
new KTable(inner.reduce(reducer.asReducer, materialized))
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦