kafka KGroupedStream 源码
kafka KGroupedStream 代码
文件路径:/streams/streams-scala/src/main/scala/org/apache/kafka/streams/scala/kstream/KGroupedStream.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.scala
package kstream
import org.apache.kafka.streams.kstream.internals.KTableImpl
import org.apache.kafka.streams.scala.serialization.Serdes
import org.apache.kafka.streams.kstream.{
KGroupedStream => KGroupedStreamJ,
KTable => KTableJ,
SessionWindows,
SlidingWindows,
Window,
Windows
}
import org.apache.kafka.streams.scala.FunctionsCompatConversions.{
AggregatorFromFunction,
InitializerFromFunction,
ReducerFromFunction,
ValueMapperFromFunction
}
/**
* Wraps the Java class KGroupedStream and delegates method calls to the underlying Java object.
*
* @tparam K Type of keys
* @tparam V Type of values
* @param inner The underlying Java abstraction for KGroupedStream
* @see `org.apache.kafka.streams.kstream.KGroupedStream`
*/
class KGroupedStream[K, V](val inner: KGroupedStreamJ[K, V]) {
/**
* Count the number of records in this stream by the grouped key.
* The result is written into a local `KeyValueStore` (which is basically an ever-updating materialized view)
* provided by the given `materialized`.
*
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
* represent the latest (rolling) count (i.e., number of records) for each key
* @see `org.apache.kafka.streams.kstream.KGroupedStream#count`
*/
def count()(implicit materialized: Materialized[K, Long, ByteArrayKeyValueStore]): KTable[K, Long] = {
val javaCountTable: KTableJ[K, java.lang.Long] =
inner.count(materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayKeyValueStore]])
val tableImpl = javaCountTable.asInstanceOf[KTableImpl[K, ByteArrayKeyValueStore, java.lang.Long]]
new KTable(
javaCountTable.mapValues[Long](
((l: java.lang.Long) => Long2long(l)).asValueMapper,
Materialized.`with`[K, Long, ByteArrayKeyValueStore](tableImpl.keySerde(), Serdes.longSerde)
)
)
}
/**
* Count the number of records in this stream by the grouped key.
* The result is written into a local `KeyValueStore` (which is basically an ever-updating materialized view)
* provided by the given `materialized`.
*
* @param named a [[Named]] config used to name the processor in the topology
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
* represent the latest (rolling) count (i.e., number of records) for each key
* @see `org.apache.kafka.streams.kstream.KGroupedStream#count`
*/
def count(named: Named)(implicit materialized: Materialized[K, Long, ByteArrayKeyValueStore]): KTable[K, Long] = {
val javaCountTable: KTableJ[K, java.lang.Long] =
inner.count(named, materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayKeyValueStore]])
val tableImpl = javaCountTable.asInstanceOf[KTableImpl[K, ByteArrayKeyValueStore, java.lang.Long]]
new KTable(
javaCountTable.mapValues[Long](
((l: java.lang.Long) => Long2long(l)).asValueMapper,
Materialized.`with`[K, Long, ByteArrayKeyValueStore](tableImpl.keySerde(), Serdes.longSerde)
)
)
}
/**
* Combine the values of records in this stream by the grouped key.
*
* @param reducer a function `(V, V) => V` that computes a new aggregate result.
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.KGroupedStream#reduce`
*/
def reduce(reducer: (V, V) => V)(implicit materialized: Materialized[K, V, ByteArrayKeyValueStore]): KTable[K, V] =
new KTable(inner.reduce(reducer.asReducer, materialized))
/**
* Combine the values of records in this stream by the grouped key.
*
* @param reducer a function `(V, V) => V` that computes a new aggregate result.
* @param named a [[Named]] config used to name the processor in the topology
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.KGroupedStream#reduce`
*/
def reduce(reducer: (V, V) => V, named: Named)(implicit
materialized: Materialized[K, V, ByteArrayKeyValueStore]
): KTable[K, V] =
new KTable(inner.reduce(reducer.asReducer, materialized))
/**
* Aggregate the values of records in this stream by the grouped key.
*
* @param initializer an `Initializer` that computes an initial intermediate aggregation result
* @param aggregator an `Aggregator` that computes a new aggregate result
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.KGroupedStream#aggregate`
*/
def aggregate[VR](initializer: => VR)(aggregator: (K, V, VR) => VR)(implicit
materialized: Materialized[K, VR, ByteArrayKeyValueStore]
): KTable[K, VR] =
new KTable(inner.aggregate((() => initializer).asInitializer, aggregator.asAggregator, materialized))
/**
* Aggregate the values of records in this stream by the grouped key.
*
* @param initializer an `Initializer` that computes an initial intermediate aggregation result
* @param aggregator an `Aggregator` that computes a new aggregate result
* @param named a [[Named]] config used to name the processor in the topology
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.KGroupedStream#aggregate`
*/
def aggregate[VR](initializer: => VR, named: Named)(aggregator: (K, V, VR) => VR)(implicit
materialized: Materialized[K, VR, ByteArrayKeyValueStore]
): KTable[K, VR] =
new KTable(inner.aggregate((() => initializer).asInitializer, aggregator.asAggregator, named, materialized))
/**
* Create a new [[TimeWindowedKStream]] instance that can be used to perform windowed aggregations.
*
* @param windows the specification of the aggregation `Windows`
* @return an instance of [[TimeWindowedKStream]]
* @see `org.apache.kafka.streams.kstream.KGroupedStream#windowedBy`
*/
def windowedBy[W <: Window](windows: Windows[W]): TimeWindowedKStream[K, V] =
new TimeWindowedKStream(inner.windowedBy(windows))
/**
* Create a new [[TimeWindowedKStream]] instance that can be used to perform sliding windowed aggregations.
*
* @param windows the specification of the aggregation `SlidingWindows`
* @return an instance of [[TimeWindowedKStream]]
* @see `org.apache.kafka.streams.kstream.KGroupedStream#windowedBy`
*/
def windowedBy(windows: SlidingWindows): TimeWindowedKStream[K, V] =
new TimeWindowedKStream(inner.windowedBy(windows))
/**
* Create a new [[SessionWindowedKStream]] instance that can be used to perform session windowed aggregations.
*
* @param windows the specification of the aggregation `SessionWindows`
* @return an instance of [[SessionWindowedKStream]]
* @see `org.apache.kafka.streams.kstream.KGroupedStream#windowedBy`
*/
def windowedBy(windows: SessionWindows): SessionWindowedKStream[K, V] =
new SessionWindowedKStream(inner.windowedBy(windows))
/**
* Create a new [[CogroupedKStream]] from this grouped KStream to allow cogrouping other [[KGroupedStream]] to it.
*
* @param aggregator an `Aggregator` that computes a new aggregate result
* @return an instance of [[CogroupedKStream]]
* @see `org.apache.kafka.streams.kstream.KGroupedStream#cogroup`
*/
def cogroup[VR](aggregator: (K, V, VR) => VR): CogroupedKStream[K, VR] =
new CogroupedKStream(inner.cogroup(aggregator.asAggregator))
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦