kafka KGroupedStream 源码

  • 2022-10-20
  • 浏览 (225)

kafka KGroupedStream 代码

文件路径:/streams/streams-scala/src/main/scala/org/apache/kafka/streams/scala/kstream/KGroupedStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.scala
package kstream

import org.apache.kafka.streams.kstream.internals.KTableImpl
import org.apache.kafka.streams.scala.serialization.Serdes
import org.apache.kafka.streams.kstream.{
  KGroupedStream => KGroupedStreamJ,
  KTable => KTableJ,
  SessionWindows,
  SlidingWindows,
  Window,
  Windows
}
import org.apache.kafka.streams.scala.FunctionsCompatConversions.{
  AggregatorFromFunction,
  InitializerFromFunction,
  ReducerFromFunction,
  ValueMapperFromFunction
}

/**
 * Wraps the Java class KGroupedStream and delegates method calls to the underlying Java object.
 *
 * @tparam K Type of keys
 * @tparam V Type of values
 * @param inner The underlying Java abstraction for KGroupedStream
 * @see `org.apache.kafka.streams.kstream.KGroupedStream`
 */
class KGroupedStream[K, V](val inner: KGroupedStreamJ[K, V]) {

  /**
   * Count the number of records in this stream by the grouped key.
   * The result is written into a local `KeyValueStore` (which is basically an ever-updating materialized view)
   * provided by the given `materialized`.
   *
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
   *         represent the latest (rolling) count (i.e., number of records) for each key
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#count`
   */
  def count()(implicit materialized: Materialized[K, Long, ByteArrayKeyValueStore]): KTable[K, Long] = {
    val javaCountTable: KTableJ[K, java.lang.Long] =
      inner.count(materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayKeyValueStore]])
    val tableImpl = javaCountTable.asInstanceOf[KTableImpl[K, ByteArrayKeyValueStore, java.lang.Long]]
    new KTable(
      javaCountTable.mapValues[Long](
        ((l: java.lang.Long) => Long2long(l)).asValueMapper,
        Materialized.`with`[K, Long, ByteArrayKeyValueStore](tableImpl.keySerde(), Serdes.longSerde)
      )
    )
  }

  /**
   * Count the number of records in this stream by the grouped key.
   * The result is written into a local `KeyValueStore` (which is basically an ever-updating materialized view)
   * provided by the given `materialized`.
   *
   * @param named        a [[Named]] config used to name the processor in the topology
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
   *         represent the latest (rolling) count (i.e., number of records) for each key
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#count`
   */
  def count(named: Named)(implicit materialized: Materialized[K, Long, ByteArrayKeyValueStore]): KTable[K, Long] = {
    val javaCountTable: KTableJ[K, java.lang.Long] =
      inner.count(named, materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayKeyValueStore]])
    val tableImpl = javaCountTable.asInstanceOf[KTableImpl[K, ByteArrayKeyValueStore, java.lang.Long]]
    new KTable(
      javaCountTable.mapValues[Long](
        ((l: java.lang.Long) => Long2long(l)).asValueMapper,
        Materialized.`with`[K, Long, ByteArrayKeyValueStore](tableImpl.keySerde(), Serdes.longSerde)
      )
    )
  }

  /**
   * Combine the values of records in this stream by the grouped key.
   *
   * @param reducer      a function `(V, V) => V` that computes a new aggregate result.
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
   *         latest (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#reduce`
   */
  def reduce(reducer: (V, V) => V)(implicit materialized: Materialized[K, V, ByteArrayKeyValueStore]): KTable[K, V] =
    new KTable(inner.reduce(reducer.asReducer, materialized))

  /**
   * Combine the values of records in this stream by the grouped key.
   *
   * @param reducer      a function `(V, V) => V` that computes a new aggregate result.
   * @param named        a [[Named]] config used to name the processor in the topology
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
   *         latest (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#reduce`
   */
  def reduce(reducer: (V, V) => V, named: Named)(implicit
    materialized: Materialized[K, V, ByteArrayKeyValueStore]
  ): KTable[K, V] =
    new KTable(inner.reduce(reducer.asReducer, materialized))

  /**
   * Aggregate the values of records in this stream by the grouped key.
   *
   * @param initializer  an `Initializer` that computes an initial intermediate aggregation result
   * @param aggregator   an `Aggregator` that computes a new aggregate result
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
   *         latest (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#aggregate`
   */
  def aggregate[VR](initializer: => VR)(aggregator: (K, V, VR) => VR)(implicit
    materialized: Materialized[K, VR, ByteArrayKeyValueStore]
  ): KTable[K, VR] =
    new KTable(inner.aggregate((() => initializer).asInitializer, aggregator.asAggregator, materialized))

  /**
   * Aggregate the values of records in this stream by the grouped key.
   *
   * @param initializer  an `Initializer` that computes an initial intermediate aggregation result
   * @param aggregator   an `Aggregator` that computes a new aggregate result
   * @param named        a [[Named]] config used to name the processor in the topology
   * @param materialized an instance of `Materialized` used to materialize a state store.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
   *         latest (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#aggregate`
   */
  def aggregate[VR](initializer: => VR, named: Named)(aggregator: (K, V, VR) => VR)(implicit
    materialized: Materialized[K, VR, ByteArrayKeyValueStore]
  ): KTable[K, VR] =
    new KTable(inner.aggregate((() => initializer).asInitializer, aggregator.asAggregator, named, materialized))

  /**
   * Create a new [[TimeWindowedKStream]] instance that can be used to perform windowed aggregations.
   *
   * @param windows the specification of the aggregation `Windows`
   * @return an instance of [[TimeWindowedKStream]]
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#windowedBy`
   */
  def windowedBy[W <: Window](windows: Windows[W]): TimeWindowedKStream[K, V] =
    new TimeWindowedKStream(inner.windowedBy(windows))

  /**
   * Create a new [[TimeWindowedKStream]] instance that can be used to perform sliding windowed aggregations.
   *
   * @param windows the specification of the aggregation `SlidingWindows`
   * @return an instance of [[TimeWindowedKStream]]
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#windowedBy`
   */
  def windowedBy(windows: SlidingWindows): TimeWindowedKStream[K, V] =
    new TimeWindowedKStream(inner.windowedBy(windows))

  /**
   * Create a new [[SessionWindowedKStream]] instance that can be used to perform session windowed aggregations.
   *
   * @param windows the specification of the aggregation `SessionWindows`
   * @return an instance of [[SessionWindowedKStream]]
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#windowedBy`
   */
  def windowedBy(windows: SessionWindows): SessionWindowedKStream[K, V] =
    new SessionWindowedKStream(inner.windowedBy(windows))

  /**
   * Create a new [[CogroupedKStream]] from this grouped KStream to allow cogrouping other [[KGroupedStream]] to it.
   *
   * @param aggregator an `Aggregator` that computes a new aggregate result
   * @return an instance of [[CogroupedKStream]]
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#cogroup`
   */
  def cogroup[VR](aggregator: (K, V, VR) => VR): CogroupedKStream[K, VR] =
    new CogroupedKStream(inner.cogroup(aggregator.asAggregator))

}

相关信息

kafka 源码目录

相关文章

kafka Branched 源码

kafka BranchedKStream 源码

kafka CogroupedKStream 源码

kafka Consumed 源码

kafka Grouped 源码

kafka Joined 源码

kafka KGroupedTable 源码

kafka KStream 源码

kafka KTable 源码

kafka Materialized 源码

0  赞