kafka CogroupedKStream 源码
kafka CogroupedKStream 代码
文件路径:/streams/streams-scala/src/main/scala/org/apache/kafka/streams/scala/kstream/CogroupedKStream.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.scala
package kstream
import org.apache.kafka.streams.kstream.{
CogroupedKStream => CogroupedKStreamJ,
SessionWindows,
SlidingWindows,
Window,
Windows
}
import org.apache.kafka.streams.scala.FunctionsCompatConversions.{AggregatorFromFunction, InitializerFromFunction}
/**
* Wraps the Java class CogroupedKStream and delegates method calls to the underlying Java object.
*
* @tparam KIn Type of keys
* @tparam VOut Type of values
* @param inner The underlying Java abstraction for CogroupedKStream
* @see `org.apache.kafka.streams.kstream.CogroupedKStream`
*/
class CogroupedKStream[KIn, VOut](val inner: CogroupedKStreamJ[KIn, VOut]) {
/**
* Add an already [[KGroupedStream]] to this [[CogroupedKStream]].
*
* @param groupedStream a group stream
* @param aggregator a function that computes a new aggregate result
* @return a [[CogroupedKStream]]
*/
def cogroup[VIn](
groupedStream: KGroupedStream[KIn, VIn],
aggregator: (KIn, VIn, VOut) => VOut
): CogroupedKStream[KIn, VOut] =
new CogroupedKStream(inner.cogroup(groupedStream.inner, aggregator.asAggregator))
/**
* Aggregate the values of records in these streams by the grouped key and defined window.
*
* @param initializer an `Initializer` that computes an initial intermediate aggregation result.
* Cannot be { @code null}.
* @param materialized an instance of `Materialized` used to materialize a state store.
* Cannot be { @code null}.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the latest
* (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.CogroupedKStream#aggregate`
*/
def aggregate(initializer: => VOut)(implicit
materialized: Materialized[KIn, VOut, ByteArrayKeyValueStore]
): KTable[KIn, VOut] = new KTable(inner.aggregate((() => initializer).asInitializer, materialized))
/**
* Aggregate the values of records in these streams by the grouped key and defined window.
*
* @param initializer an `Initializer` that computes an initial intermediate aggregation result.
* Cannot be { @code null}.
* @param named a [[Named]] config used to name the processor in the topology
* @param materialized an instance of `Materialized` used to materialize a state store.
* Cannot be { @code null}.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the latest
* (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.CogroupedKStream#aggregate`
*/
def aggregate(initializer: => VOut, named: Named)(implicit
materialized: Materialized[KIn, VOut, ByteArrayKeyValueStore]
): KTable[KIn, VOut] = new KTable(inner.aggregate((() => initializer).asInitializer, named, materialized))
/**
* Create a new [[TimeWindowedCogroupedKStream]] instance that can be used to perform windowed aggregations.
*
* @param windows the specification of the aggregation `Windows`
* @return an instance of [[TimeWindowedCogroupedKStream]]
* @see `org.apache.kafka.streams.kstream.CogroupedKStream#windowedBy`
*/
def windowedBy[W <: Window](windows: Windows[W]): TimeWindowedCogroupedKStream[KIn, VOut] =
new TimeWindowedCogroupedKStream(inner.windowedBy(windows))
/**
* Create a new [[TimeWindowedCogroupedKStream]] instance that can be used to perform sliding windowed aggregations.
*
* @param windows the specification of the aggregation `SlidingWindows`
* @return an instance of [[TimeWindowedCogroupedKStream]]
* @see `org.apache.kafka.streams.kstream.CogroupedKStream#windowedBy`
*/
def windowedBy(windows: SlidingWindows): TimeWindowedCogroupedKStream[KIn, VOut] =
new TimeWindowedCogroupedKStream(inner.windowedBy(windows))
/**
* Create a new [[SessionWindowedKStream]] instance that can be used to perform session windowed aggregations.
*
* @param windows the specification of the aggregation `SessionWindows`
* @return an instance of [[SessionWindowedKStream]]
* @see `org.apache.kafka.streams.kstream.KGroupedStream#windowedBy`
*/
def windowedBy(windows: SessionWindows): SessionWindowedCogroupedKStream[KIn, VOut] =
new SessionWindowedCogroupedKStream(inner.windowedBy(windows))
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦