kafka CogroupedKStream 源码

  • 2022-10-20
  • 浏览 (238)

kafka CogroupedKStream 代码

文件路径:/streams/streams-scala/src/main/scala/org/apache/kafka/streams/scala/kstream/CogroupedKStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.scala
package kstream

import org.apache.kafka.streams.kstream.{
  CogroupedKStream => CogroupedKStreamJ,
  SessionWindows,
  SlidingWindows,
  Window,
  Windows
}
import org.apache.kafka.streams.scala.FunctionsCompatConversions.{AggregatorFromFunction, InitializerFromFunction}

/**
 * Wraps the Java class CogroupedKStream and delegates method calls to the underlying Java object.
 *
 * @tparam KIn  Type of keys
 * @tparam VOut Type of values
 * @param inner The underlying Java abstraction for CogroupedKStream
 * @see `org.apache.kafka.streams.kstream.CogroupedKStream`
 */
class CogroupedKStream[KIn, VOut](val inner: CogroupedKStreamJ[KIn, VOut]) {

  /**
   * Add an already [[KGroupedStream]] to this [[CogroupedKStream]].
   *
   * @param groupedStream a group stream
   * @param aggregator    a function that computes a new aggregate result
   * @return a [[CogroupedKStream]]
   */
  def cogroup[VIn](
    groupedStream: KGroupedStream[KIn, VIn],
    aggregator: (KIn, VIn, VOut) => VOut
  ): CogroupedKStream[KIn, VOut] =
    new CogroupedKStream(inner.cogroup(groupedStream.inner, aggregator.asAggregator))

  /**
   * Aggregate the values of records in these streams by the grouped key and defined window.
   *
   * @param initializer  an `Initializer` that computes an initial intermediate aggregation result.
   *                     Cannot be { @code null}.
   * @param materialized an instance of `Materialized` used to materialize a state store.
   *                     Cannot be { @code null}.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the latest
   *         (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.CogroupedKStream#aggregate`
   */
  def aggregate(initializer: => VOut)(implicit
    materialized: Materialized[KIn, VOut, ByteArrayKeyValueStore]
  ): KTable[KIn, VOut] = new KTable(inner.aggregate((() => initializer).asInitializer, materialized))

  /**
   * Aggregate the values of records in these streams by the grouped key and defined window.
   *
   * @param initializer  an `Initializer` that computes an initial intermediate aggregation result.
   *                     Cannot be { @code null}.
   * @param named        a [[Named]] config used to name the processor in the topology
   * @param materialized an instance of `Materialized` used to materialize a state store.
   *                     Cannot be { @code null}.
   * @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the latest
   *         (rolling) aggregate for each key
   * @see `org.apache.kafka.streams.kstream.CogroupedKStream#aggregate`
   */
  def aggregate(initializer: => VOut, named: Named)(implicit
    materialized: Materialized[KIn, VOut, ByteArrayKeyValueStore]
  ): KTable[KIn, VOut] = new KTable(inner.aggregate((() => initializer).asInitializer, named, materialized))

  /**
   * Create a new [[TimeWindowedCogroupedKStream]] instance that can be used to perform windowed aggregations.
   *
   * @param windows the specification of the aggregation `Windows`
   * @return an instance of [[TimeWindowedCogroupedKStream]]
   * @see `org.apache.kafka.streams.kstream.CogroupedKStream#windowedBy`
   */
  def windowedBy[W <: Window](windows: Windows[W]): TimeWindowedCogroupedKStream[KIn, VOut] =
    new TimeWindowedCogroupedKStream(inner.windowedBy(windows))

  /**
   * Create a new [[TimeWindowedCogroupedKStream]] instance that can be used to perform sliding windowed aggregations.
   *
   * @param windows the specification of the aggregation `SlidingWindows`
   * @return an instance of [[TimeWindowedCogroupedKStream]]
   * @see `org.apache.kafka.streams.kstream.CogroupedKStream#windowedBy`
   */
  def windowedBy(windows: SlidingWindows): TimeWindowedCogroupedKStream[KIn, VOut] =
    new TimeWindowedCogroupedKStream(inner.windowedBy(windows))

  /**
   * Create a new [[SessionWindowedKStream]] instance that can be used to perform session windowed aggregations.
   *
   * @param windows the specification of the aggregation `SessionWindows`
   * @return an instance of [[SessionWindowedKStream]]
   * @see `org.apache.kafka.streams.kstream.KGroupedStream#windowedBy`
   */
  def windowedBy(windows: SessionWindows): SessionWindowedCogroupedKStream[KIn, VOut] =
    new SessionWindowedCogroupedKStream(inner.windowedBy(windows))

}

相关信息

kafka 源码目录

相关文章

kafka Branched 源码

kafka BranchedKStream 源码

kafka Consumed 源码

kafka Grouped 源码

kafka Joined 源码

kafka KGroupedStream 源码

kafka KGroupedTable 源码

kafka KStream 源码

kafka KTable 源码

kafka Materialized 源码

0  赞