kafka KGroupedTable 源码
kafka KGroupedTable 代码
文件路径:/streams/streams-scala/src/main/scala/org/apache/kafka/streams/scala/kstream/KGroupedTable.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams.scala
package kstream
import org.apache.kafka.streams.kstream.{KGroupedTable => KGroupedTableJ}
import org.apache.kafka.streams.scala.FunctionsCompatConversions.{
AggregatorFromFunction,
InitializerFromFunction,
ReducerFromFunction
}
/**
* Wraps the Java class KGroupedTable and delegates method calls to the underlying Java object.
*
* @tparam K Type of keys
* @tparam V Type of values
* @param inner The underlying Java abstraction for KGroupedTable
* @see `org.apache.kafka.streams.kstream.KGroupedTable`
*/
class KGroupedTable[K, V](inner: KGroupedTableJ[K, V]) {
/**
* Count number of records of the original [[KTable]] that got [[KTable#groupBy]] to
* the same key into a new instance of [[KTable]].
*
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
* represent the latest (rolling) count (i.e., number of records) for each key
* @see `org.apache.kafka.streams.kstream.KGroupedTable#count`
*/
def count()(implicit materialized: Materialized[K, Long, ByteArrayKeyValueStore]): KTable[K, Long] = {
val c: KTable[K, java.lang.Long] =
new KTable(inner.count(materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayKeyValueStore]]))
c.mapValues[Long](Long2long _)
}
/**
* Count number of records of the original [[KTable]] that got [[KTable#groupBy]] to
* the same key into a new instance of [[KTable]].
*
* @param named a [[Named]] config used to name the processor in the topology
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys and `Long` values that
* represent the latest (rolling) count (i.e., number of records) for each key
* @see `org.apache.kafka.streams.kstream.KGroupedTable#count`
*/
def count(named: Named)(implicit materialized: Materialized[K, Long, ByteArrayKeyValueStore]): KTable[K, Long] = {
val c: KTable[K, java.lang.Long] =
new KTable(inner.count(named, materialized.asInstanceOf[Materialized[K, java.lang.Long, ByteArrayKeyValueStore]]))
c.mapValues[Long](Long2long _)
}
/**
* Combine the value of records of the original [[KTable]] that got [[KTable#groupBy]]
* to the same key into a new instance of [[KTable]].
*
* @param adder a function that adds a new value to the aggregate result
* @param subtractor a function that removed an old value from the aggregate result
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.KGroupedTable#reduce`
*/
def reduce(adder: (V, V) => V, subtractor: (V, V) => V)(implicit
materialized: Materialized[K, V, ByteArrayKeyValueStore]
): KTable[K, V] =
new KTable(inner.reduce(adder.asReducer, subtractor.asReducer, materialized))
/**
* Combine the value of records of the original [[KTable]] that got [[KTable#groupBy]]
* to the same key into a new instance of [[KTable]].
*
* @param adder a function that adds a new value to the aggregate result
* @param subtractor a function that removed an old value from the aggregate result
* @param named a [[Named]] config used to name the processor in the topology
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.KGroupedTable#reduce`
*/
def reduce(adder: (V, V) => V, subtractor: (V, V) => V, named: Named)(implicit
materialized: Materialized[K, V, ByteArrayKeyValueStore]
): KTable[K, V] =
new KTable(inner.reduce(adder.asReducer, subtractor.asReducer, named, materialized))
/**
* Aggregate the value of records of the original [[KTable]] that got [[KTable#groupBy]]
* to the same key into a new instance of [[KTable]] using default serializers and deserializers.
*
* @param initializer a function that provides an initial aggregate result value
* @param adder a function that adds a new record to the aggregate result
* @param subtractor an aggregator function that removed an old record from the aggregate result
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.KGroupedTable#aggregate`
*/
def aggregate[VR](initializer: => VR)(adder: (K, V, VR) => VR, subtractor: (K, V, VR) => VR)(implicit
materialized: Materialized[K, VR, ByteArrayKeyValueStore]
): KTable[K, VR] =
new KTable(
inner.aggregate((() => initializer).asInitializer, adder.asAggregator, subtractor.asAggregator, materialized)
)
/**
* Aggregate the value of records of the original [[KTable]] that got [[KTable#groupBy]]
* to the same key into a new instance of [[KTable]] using default serializers and deserializers.
*
* @param initializer a function that provides an initial aggregate result value
* @param named a [[Named]] config used to name the processor in the topology
* @param adder a function that adds a new record to the aggregate result
* @param subtractor an aggregator function that removed an old record from the aggregate result
* @param materialized an instance of `Materialized` used to materialize a state store.
* @return a [[KTable]] that contains "update" records with unmodified keys, and values that represent the
* latest (rolling) aggregate for each key
* @see `org.apache.kafka.streams.kstream.KGroupedTable#aggregate`
*/
def aggregate[VR](initializer: => VR, named: Named)(adder: (K, V, VR) => VR, subtractor: (K, V, VR) => VR)(implicit
materialized: Materialized[K, VR, ByteArrayKeyValueStore]
): KTable[K, VR] =
new KTable(
inner.aggregate(
(() => initializer).asInitializer,
adder.asAggregator,
subtractor.asAggregator,
named,
materialized
)
)
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦