spark MulticlassMetricsExample 源码

  • 2022-10-20
  • 浏览 (260)

spark MulticlassMetricsExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/MulticlassMetricsExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
// $example off$

object MulticlassMetricsExample {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("MulticlassMetricsExample")
    val sc = new SparkContext(conf)

    // $example on$
    // Load training data in LIBSVM format
    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt")

    // Split data into training (60%) and test (40%)
    val Array(training, test) = data.randomSplit(Array(0.6, 0.4), seed = 11L)
    training.cache()

    // Run training algorithm to build the model
    val model = new LogisticRegressionWithLBFGS()
      .setNumClasses(3)
      .run(training)

    // Compute raw scores on the test set
    val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
      val prediction = model.predict(features)
      (prediction, label)
    }

    // Instantiate metrics object
    val metrics = new MulticlassMetrics(predictionAndLabels)

    // Confusion matrix
    println("Confusion matrix:")
    println(metrics.confusionMatrix)

    // Overall Statistics
    val accuracy = metrics.accuracy
    println("Summary Statistics")
    println(s"Accuracy = $accuracy")

    // Precision by label
    val labels = metrics.labels
    labels.foreach { l =>
      println(s"Precision($l) = " + metrics.precision(l))
    }

    // Recall by label
    labels.foreach { l =>
      println(s"Recall($l) = " + metrics.recall(l))
    }

    // False positive rate by label
    labels.foreach { l =>
      println(s"FPR($l) = " + metrics.falsePositiveRate(l))
    }

    // F-measure by label
    labels.foreach { l =>
      println(s"F1-Score($l) = " + metrics.fMeasure(l))
    }

    // Weighted stats
    println(s"Weighted precision: ${metrics.weightedPrecision}")
    println(s"Weighted recall: ${metrics.weightedRecall}")
    println(s"Weighted F1 score: ${metrics.weightedFMeasure}")
    println(s"Weighted false positive rate: ${metrics.weightedFalsePositiveRate}")
    // $example off$

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞