spark DenseKMeans 源码

  • 2022-10-20
  • 浏览 (249)

spark DenseKMeans 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/DenseKMeans.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.logging.log4j.Level
import org.apache.logging.log4j.core.config.Configurator
import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors

/**
 * An example k-means app. Run with
 * {{{
 * ./bin/run-example org.apache.spark.examples.mllib.DenseKMeans [options] <input>
 * }}}
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 */
object DenseKMeans {

  object InitializationMode extends Enumeration {
    type InitializationMode = Value
    val Random, Parallel = Value
  }

  import InitializationMode._

  case class Params(
      input: String = null,
      k: Int = -1,
      numIterations: Int = 10,
      initializationMode: InitializationMode = Parallel) extends AbstractParams[Params]

  def main(args: Array[String]): Unit = {
    val defaultParams = Params()

    val parser = new OptionParser[Params]("DenseKMeans") {
      head("DenseKMeans: an example k-means app for dense data.")
      opt[Int]('k', "k")
        .required()
        .text(s"number of clusters, required")
        .action((x, c) => c.copy(k = x))
      opt[Int]("numIterations")
        .text(s"number of iterations, default: ${defaultParams.numIterations}")
        .action((x, c) => c.copy(numIterations = x))
      opt[String]("initMode")
        .text(s"initialization mode (${InitializationMode.values.mkString(",")}), " +
        s"default: ${defaultParams.initializationMode}")
        .action((x, c) => c.copy(initializationMode = InitializationMode.withName(x)))
      arg[String]("<input>")
        .text("input paths to examples")
        .required()
        .action((x, c) => c.copy(input = x))
    }

    parser.parse(args, defaultParams) match {
      case Some(params) => run(params)
      case _ => sys.exit(1)
    }
  }

  def run(params: Params): Unit = {
    val conf = new SparkConf().setAppName(s"DenseKMeans with $params")
    val sc = new SparkContext(conf)

    Configurator.setRootLevel(Level.WARN)

    val examples = sc.textFile(params.input).map { line =>
      Vectors.dense(line.split(' ').map(_.toDouble))
    }.cache()

    val numExamples = examples.count()

    println(s"numExamples = $numExamples.")

    val initMode = params.initializationMode match {
      case Random => KMeans.RANDOM
      case Parallel => KMeans.K_MEANS_PARALLEL
    }

    val model = new KMeans()
      .setInitializationMode(initMode)
      .setK(params.k)
      .setMaxIterations(params.numIterations)
      .run(examples)

    val cost = model.computeCost(examples)

    println(s"Total cost = $cost.")

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞