spark RobustScaler 源码

  • 2022-10-20
  • 浏览 (200)

spark RobustScaler 代码

文件路径:/mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml.{Estimator, Model}
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol, HasRelativeError}
import org.apache.spark.ml.util._
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.catalyst.util.QuantileSummaries
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StructType

/**
 * Params for [[RobustScaler]] and [[RobustScalerModel]].
 */
private[feature] trait RobustScalerParams extends Params with HasInputCol with HasOutputCol
  with HasRelativeError {

  /**
   * Lower quantile to calculate quantile range, shared by all features
   * Default: 0.25
   * @group param
   */
  val lower: DoubleParam = new DoubleParam(this, "lower",
    "Lower quantile to calculate quantile range",
    ParamValidators.inRange(0, 1, false, false))

  /** @group getParam */
  def getLower: Double = $(lower)

  /**
   * Upper quantile to calculate quantile range, shared by all features
   * Default: 0.75
   * @group param
   */
  val upper: DoubleParam = new DoubleParam(this, "upper",
    "Upper quantile to calculate quantile range",
    ParamValidators.inRange(0, 1, false, false))

  /** @group getParam */
  def getUpper: Double = $(upper)

  /**
   * Whether to center the data with median before scaling.
   * It will build a dense output, so take care when applying to sparse input.
   * Default: false
   * @group param
   */
  val withCentering: BooleanParam = new BooleanParam(this, "withCentering",
    "Whether to center data with median")

  /** @group getParam */
  def getWithCentering: Boolean = $(withCentering)

  /**
   * Whether to scale the data to quantile range.
   * Default: true
   * @group param
   */
  val withScaling: BooleanParam = new BooleanParam(this, "withScaling",
    "Whether to scale the data to quantile range")

  /** @group getParam */
  def getWithScaling: Boolean = $(withScaling)

  setDefault(withScaling -> true, lower -> 0.25, upper -> 0.75, withCentering -> false)

  /** Validates and transforms the input schema. */
  protected def validateAndTransformSchema(schema: StructType): StructType = {
    require($(lower) < $(upper), s"The specified lower quantile(${$(lower)}) is " +
      s"larger or equal to upper quantile(${$(upper)})")
    SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
    require(!schema.fieldNames.contains($(outputCol)),
      s"Output column ${$(outputCol)} already exists.")
    SchemaUtils.appendColumn(schema, $(outputCol), new VectorUDT)
  }
}


/**
 * Scale features using statistics that are robust to outliers.
 * RobustScaler removes the median and scales the data according to the quantile range.
 * The quantile range is by default IQR (Interquartile Range, quantile range between the
 * 1st quartile = 25th quantile and the 3rd quartile = 75th quantile) but can be configured.
 * Centering and scaling happen independently on each feature by computing the relevant
 * statistics on the samples in the training set. Median and quantile range are then
 * stored to be used on later data using the transform method.
 * Standardization of a dataset is a common requirement for many machine learning estimators.
 * Typically this is done by removing the mean and scaling to unit variance. However,
 * outliers can often influence the sample mean / variance in a negative way.
 * In such cases, the median and the quantile range often give better results.
 * Note that NaN values are ignored in the computation of medians and ranges.
 */
@Since("3.0.0")
class RobustScaler @Since("3.0.0") (@Since("3.0.0") override val uid: String)
  extends Estimator[RobustScalerModel] with RobustScalerParams with DefaultParamsWritable {

  import RobustScaler._

  def this() = this(Identifiable.randomUID("robustScal"))

  /** @group setParam */
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  def setOutputCol(value: String): this.type = set(outputCol, value)

  /** @group setParam */
  def setLower(value: Double): this.type = set(lower, value)

  /** @group setParam */
  def setUpper(value: Double): this.type = set(upper, value)

  /** @group setParam */
  def setWithCentering(value: Boolean): this.type = set(withCentering, value)

  /** @group setParam */
  def setWithScaling(value: Boolean): this.type = set(withScaling, value)

  /** @group expertSetParam */
  def setRelativeError(value: Double): this.type = set(relativeError, value)

  override def fit(dataset: Dataset[_]): RobustScalerModel = {
    transformSchema(dataset.schema, logging = true)

    val numFeatures = DatasetUtils.getNumFeatures(dataset, $(inputCol))
    val vectors = dataset.select($(inputCol)).rdd.map {
      case Row(vec: Vector) =>
        require(vec.size == numFeatures,
          s"Number of dimensions must be $numFeatures but got ${vec.size}")
        vec
    }

    val localUpper = $(upper)
    val localLower = $(lower)

    val (ranges, medians) = computeSummaries(vectors, numFeatures, $(relativeError))
      .mapValues { s =>
        val range = s.query(localUpper).get - s.query(localLower).get
        val median = s.query(0.5).get
        (range, median)
      }.collect().sortBy(_._1).map(_._2).unzip
    require(ranges.length == numFeatures,
      "QuantileSummaries on some features are missing")

    copyValues(new RobustScalerModel(uid, Vectors.dense(ranges).compressed,
      Vectors.dense(medians).compressed).setParent(this))
  }

  override def transformSchema(schema: StructType): StructType = {
    validateAndTransformSchema(schema)
  }

  override def copy(extra: ParamMap): RobustScaler = defaultCopy(extra)
}

@Since("3.0.0")
object RobustScaler extends DefaultParamsReadable[RobustScaler] {

  // compute QuantileSummaries for each feature
  private[ml] def computeSummaries(
      vectors: RDD[Vector],
      numFeatures: Int,
      relativeError: Double): RDD[(Int, QuantileSummaries)] = {
    if (numFeatures <= 1000) {
      vectors.mapPartitions { iter =>
        if (iter.hasNext) {
          val summaries = Array.fill(numFeatures)(
            new QuantileSummaries(QuantileSummaries.defaultCompressThreshold, relativeError))
          while (iter.hasNext) {
            val vec = iter.next
            vec.foreach { (i, v) => if (!v.isNaN) summaries(i) = summaries(i).insert(v) }
          }
          Iterator.tabulate(numFeatures)(i => (i, summaries(i).compress))
        } else Iterator.empty
      }.reduceByKey { (s1, s2) => s1.merge(s2) }
    } else {
      val scale = math.max(math.ceil(math.sqrt(vectors.getNumPartitions)).toInt, 2)
      vectors.mapPartitionsWithIndex { case (pid, iter) =>
        val p = pid % scale
        iter.flatMap { vec =>
          Iterator.tabulate(numFeatures)(i => ((p, i), vec(i)))
        }.filter(!_._2.isNaN)
      }.aggregateByKey(
        new QuantileSummaries(QuantileSummaries.defaultCompressThreshold, relativeError))(
        seqOp = (s, v) => s.insert(v),
        combOp = (s1, s2) => s1.compress.merge(s2.compress)
      ).map { case ((_, i), s) => (i, s)
      }.reduceByKey { (s1, s2) => s1.compress.merge(s2.compress) }
    }
  }

  override def load(path: String): RobustScaler = super.load(path)
}

/**
 * Model fitted by [[RobustScaler]].
 *
 * @param range quantile range for each original column during fitting
 * @param median median value for each original column during fitting
 */
@Since("3.0.0")
class RobustScalerModel private[ml] (
    @Since("3.0.0") override val uid: String,
    @Since("3.0.0") val range: Vector,
    @Since("3.0.0") val median: Vector)
  extends Model[RobustScalerModel] with RobustScalerParams with MLWritable {

  import RobustScalerModel._

  /** @group setParam */
  def setInputCol(value: String): this.type = set(inputCol, value)

  /** @group setParam */
  def setOutputCol(value: String): this.type = set(outputCol, value)

  override def transform(dataset: Dataset[_]): DataFrame = {
    val outputSchema = transformSchema(dataset.schema, logging = true)

    val shift = if ($(withCentering)) median.toArray else Array.emptyDoubleArray
    val scale = if ($(withScaling)) {
      range.toArray.map { v => if (v == 0) 0.0 else 1.0 / v }
    } else Array.emptyDoubleArray

    val func = StandardScalerModel.getTransformFunc(
      shift, scale, $(withCentering), $(withScaling))
    val transformer = udf(func)

    dataset.withColumn($(outputCol), transformer(col($(inputCol))),
      outputSchema($(outputCol)).metadata)
  }

  override def transformSchema(schema: StructType): StructType = {
    var outputSchema = validateAndTransformSchema(schema)
    if ($(outputCol).nonEmpty) {
      outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
        $(outputCol), median.size)
    }
    outputSchema
  }

  override def copy(extra: ParamMap): RobustScalerModel = {
    val copied = new RobustScalerModel(uid, range, median)
    copyValues(copied, extra).setParent(parent)
  }

  override def write: MLWriter = new RobustScalerModelWriter(this)

  @Since("3.0.0")
  override def toString: String = {
    s"RobustScalerModel: uid=$uid, numFeatures=${median.size}, " +
      s"withCentering=${$(withCentering)}, withScaling=${$(withScaling)}"
  }
}

@Since("3.0.0")
object RobustScalerModel extends MLReadable[RobustScalerModel] {

  private[RobustScalerModel]
  class RobustScalerModelWriter(instance: RobustScalerModel) extends MLWriter {

    private case class Data(range: Vector, median: Vector)

    override protected def saveImpl(path: String): Unit = {
      DefaultParamsWriter.saveMetadata(instance, path, sc)
      val data = Data(instance.range, instance.median)
      val dataPath = new Path(path, "data").toString
      sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
    }
  }

  private class RobustScalerModelReader extends MLReader[RobustScalerModel] {

    private val className = classOf[RobustScalerModel].getName

    override def load(path: String): RobustScalerModel = {
      val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
      val dataPath = new Path(path, "data").toString
      val data = sparkSession.read.parquet(dataPath)
      val Row(range: Vector, median: Vector) = MLUtils
        .convertVectorColumnsToML(data, "range", "median")
        .select("range", "median")
        .head()
      val model = new RobustScalerModel(metadata.uid, range, median)
      metadata.getAndSetParams(model)
      model
    }
  }

  override def read: MLReader[RobustScalerModel] = new RobustScalerModelReader

  override def load(path: String): RobustScalerModel = super.load(path)
}

相关信息

spark 源码目录

相关文章

spark Binarizer 源码

spark BucketedRandomProjectionLSH 源码

spark Bucketizer 源码

spark ChiSqSelector 源码

spark CountVectorizer 源码

spark DCT 源码

spark ElementwiseProduct 源码

spark FeatureHasher 源码

spark HashingTF 源码

spark IDF 源码

0  赞