spark PMMLModelExportFactory 源码
spark PMMLModelExportFactory 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/pmml/export/PMMLModelExportFactory.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.pmml.export
import org.dmg.pmml.regression.RegressionModel
import org.apache.spark.mllib.classification.LogisticRegressionModel
import org.apache.spark.mllib.classification.SVMModel
import org.apache.spark.mllib.clustering.KMeansModel
import org.apache.spark.mllib.regression.LassoModel
import org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.RidgeRegressionModel
private[mllib] object PMMLModelExportFactory {
/**
* Factory object to help creating the necessary PMMLModelExport implementation
* taking as input the machine learning model (for example KMeansModel).
*/
def createPMMLModelExport(model: Any): PMMLModelExport = {
model match {
case kmeans: KMeansModel =>
new KMeansPMMLModelExport(kmeans)
case linear: LinearRegressionModel =>
new GeneralizedLinearPMMLModelExport(linear, "linear regression")
case ridge: RidgeRegressionModel =>
new GeneralizedLinearPMMLModelExport(ridge, "ridge regression")
case lasso: LassoModel =>
new GeneralizedLinearPMMLModelExport(lasso, "lasso regression")
case svm: SVMModel =>
new BinaryClassificationPMMLModelExport(
svm, "linear SVM", RegressionModel.NormalizationMethod.NONE,
svm.getThreshold.getOrElse(0.0))
case logistic: LogisticRegressionModel =>
if (logistic.numClasses == 2) {
new BinaryClassificationPMMLModelExport(
logistic, "logistic regression", RegressionModel.NormalizationMethod.LOGIT,
logistic.getThreshold.getOrElse(0.5))
} else {
throw new IllegalArgumentException(
"PMML Export not supported for Multinomial Logistic Regression")
}
case _ =>
throw new IllegalArgumentException(
"PMML Export not supported for model: " + model.getClass.getName)
}
}
}
相关信息
相关文章
spark BinaryClassificationPMMLModelExport 源码
spark GeneralizedLinearPMMLModelExport 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦