spark GeneralizedLinearPMMLModelExport 源码
spark GeneralizedLinearPMMLModelExport 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/pmml/export/GeneralizedLinearPMMLModelExport.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.pmml.export
import scala.{Array => SArray}
import org.dmg.pmml.{DataDictionary, DataField, DataType, FieldName, MiningField,
MiningFunction, MiningSchema, OpType}
import org.dmg.pmml.regression.{NumericPredictor, RegressionModel, RegressionTable}
import org.apache.spark.mllib.regression.GeneralizedLinearModel
/**
* PMML Model Export for GeneralizedLinearModel abstract class
*/
private[mllib] class GeneralizedLinearPMMLModelExport(
model: GeneralizedLinearModel,
description: String)
extends PMMLModelExport {
populateGeneralizedLinearPMML(model)
/**
* Export the input GeneralizedLinearModel model to PMML format.
*/
private def populateGeneralizedLinearPMML(model: GeneralizedLinearModel): Unit = {
pmml.getHeader.setDescription(description)
if (model.weights.size > 0) {
val fields = new SArray[FieldName](model.weights.size)
val dataDictionary = new DataDictionary
val miningSchema = new MiningSchema
val regressionTable = new RegressionTable(model.intercept)
val regressionModel = new RegressionModel()
.setMiningFunction(MiningFunction.REGRESSION)
.setMiningSchema(miningSchema)
.setModelName(description)
.addRegressionTables(regressionTable)
for (i <- 0 until model.weights.size) {
fields(i) = FieldName.create("field_" + i)
dataDictionary.addDataFields(new DataField(fields(i), OpType.CONTINUOUS, DataType.DOUBLE))
miningSchema
.addMiningFields(new MiningField(fields(i))
.setUsageType(MiningField.UsageType.ACTIVE))
regressionTable.addNumericPredictors(new NumericPredictor(fields(i), model.weights(i)))
}
// for completeness add target field
val targetField = FieldName.create("target")
dataDictionary.addDataFields(new DataField(targetField, OpType.CONTINUOUS, DataType.DOUBLE))
miningSchema
.addMiningFields(new MiningField(targetField)
.setUsageType(MiningField.UsageType.TARGET))
dataDictionary.setNumberOfFields(dataDictionary.getDataFields.size)
pmml.setDataDictionary(dataDictionary)
pmml.addModels(regressionModel)
}
}
}
相关信息
相关文章
spark BinaryClassificationPMMLModelExport 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦