spark KMeansPMMLModelExport 源码
spark KMeansPMMLModelExport 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/pmml/export/KMeansPMMLModelExport.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.pmml.export
import scala.{Array => SArray}
import org.dmg.pmml.{Array, CompareFunction, ComparisonMeasure, DataDictionary, DataField, DataType,
FieldName, MiningField, MiningFunction, MiningSchema, OpType, SquaredEuclidean}
import org.dmg.pmml.clustering.{Cluster, ClusteringField, ClusteringModel}
import org.apache.spark.mllib.clustering.KMeansModel
/**
* PMML Model Export for KMeansModel class
*/
private[mllib] class KMeansPMMLModelExport(model: KMeansModel) extends PMMLModelExport {
populateKMeansPMML(model)
/**
* Export the input KMeansModel model to PMML format.
*/
private def populateKMeansPMML(model: KMeansModel): Unit = {
pmml.getHeader.setDescription("k-means clustering")
if (model.clusterCenters.length > 0) {
val clusterCenter = model.clusterCenters(0)
val fields = new SArray[FieldName](clusterCenter.size)
val dataDictionary = new DataDictionary
val miningSchema = new MiningSchema
val comparisonMeasure = new ComparisonMeasure()
.setKind(ComparisonMeasure.Kind.DISTANCE)
.setMeasure(new SquaredEuclidean())
val clusteringModel = new ClusteringModel()
.setModelName("k-means")
.setMiningSchema(miningSchema)
.setComparisonMeasure(comparisonMeasure)
.setMiningFunction(MiningFunction.CLUSTERING)
.setModelClass(ClusteringModel.ModelClass.CENTER_BASED)
.setNumberOfClusters(model.clusterCenters.length)
for (i <- 0 until clusterCenter.size) {
fields(i) = FieldName.create("field_" + i)
dataDictionary.addDataFields(new DataField(fields(i), OpType.CONTINUOUS, DataType.DOUBLE))
miningSchema
.addMiningFields(new MiningField(fields(i))
.setUsageType(MiningField.UsageType.ACTIVE))
clusteringModel.addClusteringFields(
new ClusteringField(fields(i)).setCompareFunction(CompareFunction.ABS_DIFF))
}
dataDictionary.setNumberOfFields(dataDictionary.getDataFields.size)
for (i <- model.clusterCenters.indices) {
val cluster = new Cluster()
.setName("cluster_" + i)
.setArray(new org.dmg.pmml.Array()
.setType(Array.Type.REAL)
.setN(clusterCenter.size)
.setValue(model.clusterCenters(i).toArray.mkString(" ")))
// we don't have the size of the single cluster but only the centroids (withValue)
// .withSize(value)
clusteringModel.addClusters(cluster)
}
pmml.setDataDictionary(dataDictionary)
pmml.addModels(clusteringModel)
}
}
}
相关信息
相关文章
spark BinaryClassificationPMMLModelExport 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦