spark PullOutGroupingExpressions 源码

  • 2022-10-20
  • 浏览 (226)

spark PullOutGroupingExpressions 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/PullOutGroupingExpressions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.optimizer

import scala.collection.mutable

import org.apache.spark.sql.catalyst.expressions.{Alias, Expression, NamedExpression}
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, LogicalPlan, Project}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.trees.TreePattern.AGGREGATE

/**
 * This rule ensures that [[Aggregate]] nodes doesn't contain complex grouping expressions in the
 * optimization phase.
 *
 * Complex grouping expressions are pulled out to a [[Project]] node under [[Aggregate]] and are
 * referenced in both grouping expressions and aggregate expressions without aggregate functions.
 * These references ensure that optimization rules don't change the aggregate expressions to invalid
 * ones that no longer refer to any grouping expressions and also simplify the expression
 * transformations on the node (need to transform the expression only once).
 *
 * For example, in the following query Spark shouldn't optimize the aggregate expression
 * `Not(IsNull(c))` to `IsNotNull(c)` as the grouping expression is `IsNull(c)`:
 * SELECT not(c IS NULL)
 * FROM t
 * GROUP BY c IS NULL
 * Instead, the aggregate expression references a `_groupingexpression` attribute:
 * Aggregate [_groupingexpression#233], [NOT _groupingexpression#233 AS (NOT (c IS NULL))#230]
 * +- Project [isnull(c#219) AS _groupingexpression#233]
 *    +- LocalRelation [c#219]
 */
object PullOutGroupingExpressions extends Rule[LogicalPlan] {
  override def apply(plan: LogicalPlan): LogicalPlan = {
    plan.transformWithPruning(_.containsPattern(AGGREGATE)) {
      case a: Aggregate if a.resolved =>
        val complexGroupingExpressionMap = mutable.LinkedHashMap.empty[Expression, NamedExpression]
        val newGroupingExpressions = a.groupingExpressions.toIndexedSeq.map {
          case e if !e.foldable && e.children.nonEmpty =>
            complexGroupingExpressionMap
              .getOrElseUpdate(e.canonicalized, Alias(e, "_groupingexpression")())
              .toAttribute
          case o => o
        }
        if (complexGroupingExpressionMap.nonEmpty) {
          def replaceComplexGroupingExpressions(e: Expression): Expression = {
            e match {
              case _ if AggregateExpression.isAggregate(e) => e
              case _ if e.foldable => e
              case _ if complexGroupingExpressionMap.contains(e.canonicalized) =>
                complexGroupingExpressionMap.get(e.canonicalized).map(_.toAttribute).getOrElse(e)
              case _ => e.mapChildren(replaceComplexGroupingExpressions)
            }
          }

          val newAggregateExpressions = a.aggregateExpressions
            .map(replaceComplexGroupingExpressions(_).asInstanceOf[NamedExpression])
          val newChild = Project(a.child.output ++ complexGroupingExpressionMap.values, a.child)
          Aggregate(newGroupingExpressions, newAggregateExpressions, newChild)
        } else {
          a
        }
    }
  }
}

相关信息

spark 源码目录

相关文章

spark ComplexTypes 源码

spark CostBasedJoinReorder 源码

spark DecorrelateInnerQuery 源码

spark EliminateResolvedHint 源码

spark InjectRuntimeFilter 源码

spark InlineCTE 源码

spark LimitPushDownThroughWindow 源码

spark MergeScalarSubqueries 源码

spark NestedColumnAliasing 源码

spark NormalizeFloatingNumbers 源码

0  赞