spark PullOutGroupingExpressions 源码
spark PullOutGroupingExpressions 代码
文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/PullOutGroupingExpressions.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.catalyst.optimizer
import scala.collection.mutable
import org.apache.spark.sql.catalyst.expressions.{Alias, Expression, NamedExpression}
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, LogicalPlan, Project}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.trees.TreePattern.AGGREGATE
/**
* This rule ensures that [[Aggregate]] nodes doesn't contain complex grouping expressions in the
* optimization phase.
*
* Complex grouping expressions are pulled out to a [[Project]] node under [[Aggregate]] and are
* referenced in both grouping expressions and aggregate expressions without aggregate functions.
* These references ensure that optimization rules don't change the aggregate expressions to invalid
* ones that no longer refer to any grouping expressions and also simplify the expression
* transformations on the node (need to transform the expression only once).
*
* For example, in the following query Spark shouldn't optimize the aggregate expression
* `Not(IsNull(c))` to `IsNotNull(c)` as the grouping expression is `IsNull(c)`:
* SELECT not(c IS NULL)
* FROM t
* GROUP BY c IS NULL
* Instead, the aggregate expression references a `_groupingexpression` attribute:
* Aggregate [_groupingexpression#233], [NOT _groupingexpression#233 AS (NOT (c IS NULL))#230]
* +- Project [isnull(c#219) AS _groupingexpression#233]
* +- LocalRelation [c#219]
*/
object PullOutGroupingExpressions extends Rule[LogicalPlan] {
override def apply(plan: LogicalPlan): LogicalPlan = {
plan.transformWithPruning(_.containsPattern(AGGREGATE)) {
case a: Aggregate if a.resolved =>
val complexGroupingExpressionMap = mutable.LinkedHashMap.empty[Expression, NamedExpression]
val newGroupingExpressions = a.groupingExpressions.toIndexedSeq.map {
case e if !e.foldable && e.children.nonEmpty =>
complexGroupingExpressionMap
.getOrElseUpdate(e.canonicalized, Alias(e, "_groupingexpression")())
.toAttribute
case o => o
}
if (complexGroupingExpressionMap.nonEmpty) {
def replaceComplexGroupingExpressions(e: Expression): Expression = {
e match {
case _ if AggregateExpression.isAggregate(e) => e
case _ if e.foldable => e
case _ if complexGroupingExpressionMap.contains(e.canonicalized) =>
complexGroupingExpressionMap.get(e.canonicalized).map(_.toAttribute).getOrElse(e)
case _ => e.mapChildren(replaceComplexGroupingExpressions)
}
}
val newAggregateExpressions = a.aggregateExpressions
.map(replaceComplexGroupingExpressions(_).asInstanceOf[NamedExpression])
val newChild = Project(a.child.output ++ complexGroupingExpressionMap.values, a.child)
Aggregate(newGroupingExpressions, newAggregateExpressions, newChild)
} else {
a
}
}
}
}
相关信息
相关文章
spark DecorrelateInnerQuery 源码
spark EliminateResolvedHint 源码
spark LimitPushDownThroughWindow 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦