spark MergeScalarSubqueries 源码

  • 2022-10-20
  • 浏览 (243)

spark MergeScalarSubqueries 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/MergeScalarSubqueries.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.optimizer

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, CTERelationDef, CTERelationRef, Filter, Join, LogicalPlan, Project, Subquery, WithCTE}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.catalyst.trees.TreePattern.{SCALAR_SUBQUERY, SCALAR_SUBQUERY_REFERENCE, TreePattern}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.DataType

/**
 * This rule tries to merge multiple non-correlated [[ScalarSubquery]]s to compute multiple scalar
 * values once.
 *
 * The process is the following:
 * - While traversing through the plan each [[ScalarSubquery]] plan is tried to merge into the cache
 *   of already seen subquery plans. If merge is possible then cache is updated with the merged
 *   subquery plan, if not then the new subquery plan is added to the cache.
 *   During this first traversal each [[ScalarSubquery]] expression is replaced to a temporal
 *   [[ScalarSubqueryReference]] reference pointing to its cached version.
 *   The cache uses a flag to keep track of if a cache entry is a result of merging 2 or more
 *   plans, or it is a plan that was seen only once.
 *   Merged plans in the cache get a "Header", that contains the list of attributes form the scalar
 *   return value of a merged subquery.
 * - A second traversal checks if there are merged subqueries in the cache and builds a `WithCTE`
 *   node from these queries. The `CTERelationDef` nodes contain the merged subquery in the
 *   following form:
 *   `Project(Seq(CreateNamedStruct(name1, attribute1, ...) AS mergedValue), mergedSubqueryPlan)`
 *   and the definitions are flagged that they host a subquery, that can return maximum one row.
 *   During the second traversal [[ScalarSubqueryReference]] expressions that pont to a merged
 *   subquery is either transformed to a `GetStructField(ScalarSubquery(CTERelationRef(...)))`
 *   expression or restored to the original [[ScalarSubquery]].
 *
 * Eg. the following query:
 *
 * SELECT
 *   (SELECT avg(a) FROM t),
 *   (SELECT sum(b) FROM t)
 *
 * is optimized from:
 *
 * == Optimized Logical Plan ==
 * Project [scalar-subquery#242 [] AS scalarsubquery()#253,
 *          scalar-subquery#243 [] AS scalarsubquery()#254L]
 * :  :- Aggregate [avg(a#244) AS avg(a)#247]
 * :  :  +- Project [a#244]
 * :  :     +- Relation default.t[a#244,b#245] parquet
 * :  +- Aggregate [sum(a#251) AS sum(a)#250L]
 * :     +- Project [a#251]
 * :        +- Relation default.t[a#251,b#252] parquet
 * +- OneRowRelation
 *
 * to:
 *
 * == Optimized Logical Plan ==
 * Project [scalar-subquery#242 [].avg(a) AS scalarsubquery()#253,
 *          scalar-subquery#243 [].sum(a) AS scalarsubquery()#254L]
 * :  :- Project [named_struct(avg(a), avg(a)#247, sum(a), sum(a)#250L) AS mergedValue#260]
 * :  :  +- Aggregate [avg(a#244) AS avg(a)#247, sum(a#244) AS sum(a)#250L]
 * :  :     +- Project [a#244]
 * :  :        +- Relation default.t[a#244,b#245] parquet
 * :  +- Project [named_struct(avg(a), avg(a)#247, sum(a), sum(a)#250L) AS mergedValue#260]
 * :     +- Aggregate [avg(a#244) AS avg(a)#247, sum(a#244) AS sum(a)#250L]
 * :        +- Project [a#244]
 * :           +- Relation default.t[a#244,b#245] parquet
 * +- OneRowRelation
 *
 * == Physical Plan ==
 *  *(1) Project [Subquery scalar-subquery#242, [id=#125].avg(a) AS scalarsubquery()#253,
 *                ReusedSubquery
 *                  Subquery scalar-subquery#242, [id=#125].sum(a) AS scalarsubquery()#254L]
 * :  :- Subquery scalar-subquery#242, [id=#125]
 * :  :  +- *(2) Project [named_struct(avg(a), avg(a)#247, sum(a), sum(a)#250L) AS mergedValue#260]
 * :  :     +- *(2) HashAggregate(keys=[], functions=[avg(a#244), sum(a#244)],
 *                                output=[avg(a)#247, sum(a)#250L])
 * :  :        +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#120]
 * :  :           +- *(1) HashAggregate(keys=[], functions=[partial_avg(a#244), partial_sum(a#244)],
 *                                      output=[sum#262, count#263L, sum#264L])
 * :  :              +- *(1) ColumnarToRow
 * :  :                 +- FileScan parquet default.t[a#244] ...
 * :  +- ReusedSubquery Subquery scalar-subquery#242, [id=#125]
 * +- *(1) Scan OneRowRelation[]
 */
object MergeScalarSubqueries extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = {
    plan match {
      // Subquery reuse needs to be enabled for this optimization.
      case _ if !conf.getConf(SQLConf.SUBQUERY_REUSE_ENABLED) => plan

      // This rule does a whole plan traversal, no need to run on subqueries.
      case _: Subquery => plan

      // Plans with CTEs are not supported for now.
      case _: WithCTE => plan

      case _ => extractCommonScalarSubqueries(plan)
    }
  }

  /**
   * An item in the cache of merged scalar subqueries.
   *
   * @param attributes Attributes that form the struct scalar return value of a merged subquery.
   * @param plan The plan of a merged scalar subquery.
   * @param merged A flag to identify if this item is the result of merging subqueries.
   *               Please note that `attributes.size == 1` doesn't always mean that the plan is not
   *               merged as there can be subqueries that are different ([[checkIdenticalPlans]] is
   *               false) due to an extra [[Project]] node in one of them. In that case
   *               `attributes.size` remains 1 after merging, but the merged flag becomes true.
   * @param references A set of subquery indexes in the cache to track all (including transitive)
   *                   nested subqueries.
   */
  case class Header(
      attributes: Seq[Attribute],
      plan: LogicalPlan,
      merged: Boolean,
      references: Set[Int])

  private def extractCommonScalarSubqueries(plan: LogicalPlan) = {
    val cache = ArrayBuffer.empty[Header]
    val planWithReferences = insertReferences(plan, cache)
    cache.zipWithIndex.foreach { case (header, i) =>
      cache(i) = cache(i).copy(plan =
        if (header.merged) {
          CTERelationDef(
            createProject(header.attributes, removeReferences(header.plan, cache)),
            underSubquery = true)
        } else {
          removeReferences(header.plan, cache)
        })
    }
    val newPlan = removeReferences(planWithReferences, cache)
    val subqueryCTEs = cache.filter(_.merged).map(_.plan.asInstanceOf[CTERelationDef])
    if (subqueryCTEs.nonEmpty) {
      WithCTE(newPlan, subqueryCTEs.toSeq)
    } else {
      newPlan
    }
  }

  // First traversal builds up the cache and inserts `ScalarSubqueryReference`s to the plan.
  private def insertReferences(plan: LogicalPlan, cache: ArrayBuffer[Header]): LogicalPlan = {
    plan.transformUpWithSubqueries {
      case n => n.transformExpressionsUpWithPruning(_.containsAnyPattern(SCALAR_SUBQUERY)) {
        case s: ScalarSubquery if !s.isCorrelated && s.deterministic =>
          val (subqueryIndex, headerIndex) = cacheSubquery(s.plan, cache)
          ScalarSubqueryReference(subqueryIndex, headerIndex, s.dataType, s.exprId)
      }
    }
  }

  // Caching returns the index of the subquery in the cache and the index of scalar member in the
  // "Header".
  private def cacheSubquery(plan: LogicalPlan, cache: ArrayBuffer[Header]): (Int, Int) = {
    val output = plan.output.head
    val references = mutable.HashSet.empty[Int]
    plan.transformAllExpressionsWithPruning(_.containsAnyPattern(SCALAR_SUBQUERY_REFERENCE)) {
      case ssr: ScalarSubqueryReference =>
        references += ssr.subqueryIndex
        references ++= cache(ssr.subqueryIndex).references
        ssr
    }

    cache.zipWithIndex.collectFirst(Function.unlift {
      case (header, subqueryIndex) if !references.contains(subqueryIndex) =>
        checkIdenticalPlans(plan, header.plan).map { outputMap =>
          val mappedOutput = mapAttributes(output, outputMap)
          val headerIndex = header.attributes.indexWhere(_.exprId == mappedOutput.exprId)
          subqueryIndex -> headerIndex
        }.orElse{
          tryMergePlans(plan, header.plan).map {
            case (mergedPlan, outputMap) =>
              val mappedOutput = mapAttributes(output, outputMap)
              var headerIndex = header.attributes.indexWhere(_.exprId == mappedOutput.exprId)
              val newHeaderAttributes = if (headerIndex == -1) {
                headerIndex = header.attributes.size
                header.attributes :+ mappedOutput
              } else {
                header.attributes
              }
              cache(subqueryIndex) =
                Header(newHeaderAttributes, mergedPlan, true, header.references ++ references)
              subqueryIndex -> headerIndex
          }
        }
      case _ => None
    }).getOrElse {
      cache += Header(Seq(output), plan, false, references.toSet)
      cache.length - 1 -> 0
    }
  }

  // If 2 plans are identical return the attribute mapping from the new to the cached version.
  private def checkIdenticalPlans(
      newPlan: LogicalPlan,
      cachedPlan: LogicalPlan): Option[AttributeMap[Attribute]] = {
    if (newPlan.canonicalized == cachedPlan.canonicalized) {
      Some(AttributeMap(newPlan.output.zip(cachedPlan.output)))
    } else {
      None
    }
  }

  // Recursively traverse down and try merging 2 plans. If merge is possible then return the merged
  // plan with the attribute mapping from the new to the merged version.
  // Please note that merging arbitrary plans can be complicated, the current version supports only
  // some of the most important nodes.
  private def tryMergePlans(
      newPlan: LogicalPlan,
      cachedPlan: LogicalPlan): Option[(LogicalPlan, AttributeMap[Attribute])] = {
    checkIdenticalPlans(newPlan, cachedPlan).map(cachedPlan -> _).orElse(
      (newPlan, cachedPlan) match {
        case (np: Project, cp: Project) =>
          tryMergePlans(np.child, cp.child).map { case (mergedChild, outputMap) =>
            val (mergedProjectList, newOutputMap) =
              mergeNamedExpressions(np.projectList, outputMap, cp.projectList)
            val mergedPlan = Project(mergedProjectList, mergedChild)
            mergedPlan -> newOutputMap
          }
        case (np, cp: Project) =>
          tryMergePlans(np, cp.child).map { case (mergedChild, outputMap) =>
            val (mergedProjectList, newOutputMap) =
              mergeNamedExpressions(np.output, outputMap, cp.projectList)
            val mergedPlan = Project(mergedProjectList, mergedChild)
            mergedPlan -> newOutputMap
          }
        case (np: Project, cp) =>
          tryMergePlans(np.child, cp).map { case (mergedChild, outputMap) =>
            val (mergedProjectList, newOutputMap) =
              mergeNamedExpressions(np.projectList, outputMap, cp.output)
            val mergedPlan = Project(mergedProjectList, mergedChild)
            mergedPlan -> newOutputMap
          }
        case (np: Aggregate, cp: Aggregate) if supportedAggregateMerge(np, cp) =>
          tryMergePlans(np.child, cp.child).flatMap { case (mergedChild, outputMap) =>
            val mappedNewGroupingExpression =
              np.groupingExpressions.map(mapAttributes(_, outputMap))
            // Order of grouping expression does matter as merging different grouping orders can
            // introduce "extra" shuffles/sorts that might not present in all of the original
            // subqueries.
            if (mappedNewGroupingExpression.map(_.canonicalized) ==
              cp.groupingExpressions.map(_.canonicalized)) {
              val (mergedAggregateExpressions, newOutputMap) =
                mergeNamedExpressions(np.aggregateExpressions, outputMap, cp.aggregateExpressions)
              val mergedPlan =
                Aggregate(cp.groupingExpressions, mergedAggregateExpressions, mergedChild)
              Some(mergedPlan -> newOutputMap)
            } else {
              None
            }
          }

        case (np: Filter, cp: Filter) =>
          tryMergePlans(np.child, cp.child).flatMap { case (mergedChild, outputMap) =>
            val mappedNewCondition = mapAttributes(np.condition, outputMap)
            // Comparing the canonicalized form is required to ignore different forms of the same
            // expression.
            if (mappedNewCondition.canonicalized == cp.condition.canonicalized) {
              val mergedPlan = cp.withNewChildren(Seq(mergedChild))
              Some(mergedPlan -> outputMap)
            } else {
              None
            }
          }

        case (np: Join, cp: Join) if np.joinType == cp.joinType && np.hint == cp.hint =>
          tryMergePlans(np.left, cp.left).flatMap { case (mergedLeft, leftOutputMap) =>
            tryMergePlans(np.right, cp.right).flatMap { case (mergedRight, rightOutputMap) =>
              val outputMap = leftOutputMap ++ rightOutputMap
              val mappedNewCondition = np.condition.map(mapAttributes(_, outputMap))
              // Comparing the canonicalized form is required to ignore different forms of the same
              // expression and `AttributeReference.quailifier`s in `cp.condition`.
              if (mappedNewCondition.map(_.canonicalized) == cp.condition.map(_.canonicalized)) {
                val mergedPlan = cp.withNewChildren(Seq(mergedLeft, mergedRight))
                Some(mergedPlan -> outputMap)
              } else {
                None
              }
            }
          }

        // Otherwise merging is not possible.
        case _ => None
      })
  }

  private def createProject(attributes: Seq[Attribute], plan: LogicalPlan): Project = {
    Project(
      Seq(Alias(
        CreateNamedStruct(attributes.flatMap(a => Seq(Literal(a.name), a))),
        "mergedValue")()),
      plan)
  }

  private def mapAttributes[T <: Expression](expr: T, outputMap: AttributeMap[Attribute]) = {
    expr.transform {
      case a: Attribute => outputMap.getOrElse(a, a)
    }.asInstanceOf[T]
  }

  // Applies `outputMap` attribute mapping on attributes of `newExpressions` and merges them into
  // `cachedExpressions`. Returns the merged expressions and the attribute mapping from the new to
  // the merged version that can be propagated up during merging nodes.
  private def mergeNamedExpressions(
      newExpressions: Seq[NamedExpression],
      outputMap: AttributeMap[Attribute],
      cachedExpressions: Seq[NamedExpression]) = {
    val mergedExpressions = ArrayBuffer[NamedExpression](cachedExpressions: _*)
    val newOutputMap = AttributeMap(newExpressions.map { ne =>
      val mapped = mapAttributes(ne, outputMap)
      val withoutAlias = mapped match {
        case Alias(child, _) => child
        case e => e
      }
      ne.toAttribute -> mergedExpressions.find {
        case Alias(child, _) => child semanticEquals withoutAlias
        case e => e semanticEquals withoutAlias
      }.getOrElse {
        mergedExpressions += mapped
        mapped
      }.toAttribute
    })
    (mergedExpressions.toSeq, newOutputMap)
  }

  // Only allow aggregates of the same implementation because merging different implementations
  // could cause performance regression.
  private def supportedAggregateMerge(newPlan: Aggregate, cachedPlan: Aggregate) = {
    val newPlanAggregateExpressions = newPlan.aggregateExpressions.flatMap(_.collect {
      case a: AggregateExpression => a
    })
    val cachedPlanAggregateExpressions = cachedPlan.aggregateExpressions.flatMap(_.collect {
      case a: AggregateExpression => a
    })
    val newPlanSupportsHashAggregate = Aggregate.supportsHashAggregate(
      newPlanAggregateExpressions.flatMap(_.aggregateFunction.aggBufferAttributes))
    val cachedPlanSupportsHashAggregate = Aggregate.supportsHashAggregate(
      cachedPlanAggregateExpressions.flatMap(_.aggregateFunction.aggBufferAttributes))
    newPlanSupportsHashAggregate && cachedPlanSupportsHashAggregate ||
      newPlanSupportsHashAggregate == cachedPlanSupportsHashAggregate && {
        val newPlanSupportsObjectHashAggregate =
          Aggregate.supportsObjectHashAggregate(newPlanAggregateExpressions)
        val cachedPlanSupportsObjectHashAggregate =
          Aggregate.supportsObjectHashAggregate(cachedPlanAggregateExpressions)
        newPlanSupportsObjectHashAggregate && cachedPlanSupportsObjectHashAggregate ||
          newPlanSupportsObjectHashAggregate == cachedPlanSupportsObjectHashAggregate
      }
  }

  // Second traversal replaces `ScalarSubqueryReference`s to either
  // `GetStructField(ScalarSubquery(CTERelationRef to the merged plan)` if the plan is merged from
  // multiple subqueries or `ScalarSubquery(original plan)` if it isn't.
  private def removeReferences(
      plan: LogicalPlan,
      cache: ArrayBuffer[Header]) = {
    plan.transformUpWithSubqueries {
      case n =>
        n.transformExpressionsWithPruning(_.containsAnyPattern(SCALAR_SUBQUERY_REFERENCE)) {
          case ssr: ScalarSubqueryReference =>
            val header = cache(ssr.subqueryIndex)
            if (header.merged) {
              val subqueryCTE = header.plan.asInstanceOf[CTERelationDef]
              GetStructField(
                ScalarSubquery(
                  CTERelationRef(subqueryCTE.id, _resolved = true, subqueryCTE.output),
                  exprId = ssr.exprId),
                ssr.headerIndex)
            } else {
              ScalarSubquery(header.plan, exprId = ssr.exprId)
            }
        }
    }
  }
}

/**
 * Temporal reference to a subquery.
 */
case class ScalarSubqueryReference(
    subqueryIndex: Int,
    headerIndex: Int,
    dataType: DataType,
    exprId: ExprId) extends LeafExpression with Unevaluable {
  override def nullable: Boolean = true

  final override val nodePatterns: Seq[TreePattern] = Seq(SCALAR_SUBQUERY_REFERENCE)

  override def stringArgs: Iterator[Any] = Iterator(subqueryIndex, headerIndex, dataType, exprId.id)
}

相关信息

spark 源码目录

相关文章

spark ComplexTypes 源码

spark CostBasedJoinReorder 源码

spark DecorrelateInnerQuery 源码

spark EliminateResolvedHint 源码

spark InjectRuntimeFilter 源码

spark InlineCTE 源码

spark LimitPushDownThroughWindow 源码

spark NestedColumnAliasing 源码

spark NormalizeFloatingNumbers 源码

spark OptimizeCsvJsonExprs 源码

0  赞